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Lab 3: Distributions of Random Variables 
 

In this lab, we investigate the probability distribution that is most central to statistics: the normal 
distribution. If we are confident that our data are nearly normal, that opens the door to many powerful 
statistical methods. Here we’ll use the graphical tools of SAS to assess the normality of our data and also 
learn how to generate random numbers from a normal distribution.1 

The Data 
We’ll be working with measurements of body dimensions. This data set contains measurements from 247 
men and 260 women, most of whom were considered healthy young adults. 

 If you are using SAS University Edition, you need to ensure that interactive mode is turned off. 
To do this, click the button to the right of Sign Out in the upper right corner of the window and 
then click Preferences. In the Preferences window, on the General tab, the bottom check box 
(located next to the text Start new programs in interactive mode) should not be selected. If the 
box is selected, you need to clear it and save your change. 
 

filename bdims url 'http://www.openintro.org/stat/data/bdims.csv'; 
 
proc import datafile=bdims 
            out=bdims 
            dbms=csv 
            replace;  
   getnames=yes; 
run; 

Let’s take a peek at the first few rows of the data. 
proc print data=bdims (obs=6); 
run; 

You see that for every observation, we have 25 measurements, many of which are either diameters or 
girths. A key to the variable names can be found at http:// www.openintro.org/ stat/ data/ bdims.php, 
but we’ll focus on only three columns to get started: weight in kg (wgt), height in cm (hgt), and sex (1 
indicates male, 0 indicates female). 

Because males and females tend to have different body dimensions, it will be useful to create two 
additional data sets: one with only men and another with only women. 
data mdims fdims; 
   set bdims; 
   if sex=1 then output mdims; 
   if sex=0 then output fdims; 
run; 

 

Exercise 1: Make a histogram of men’s heights and a histogram of women’s heights. How would you 
compare the various aspects of the two distributions? 

1 This  is  a product  of  OpenIntro  that  is  released under  a Creative  Commons Attribution-ShareAlike  3.0 Unported   
(http:// creativecommons.org/licenses/ by-sa/ 3.0/ ). This lab was written for OpenIntro by Andrew Bray and Mine Ç etinkaya-Rundel and modified 
by SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. 
in the USA and other countries (® indicates USA registration) and are not included under the CC-BY-SA license.  
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The Normal Distribution 
In your description of the distributions, did you use words such as “bell-shaped” or “normal?” It’s 
tempting to say so when faced with a unimodal symmetric distribution. 

To see how accurate that description is, we can plot a normal distribution curve on top of a histogram to 
see how closely the data follow a normal distribution. This normal curve should have the same mean and 
standard deviation as the data.  

Next we make a density histogram with a normal probability curve overlaid. The difference between a 
frequency histogram and a density histogram is that in a frequency histogram, the heights of the bars add 
up to the total number of observations. In a density histogram, the areas of the bars add up to 1. The area 
of each bar can be calculated as simply the height × the width of the bar. Using a density histogram 
enables us to properly overlay a normal distribution curve over the histogram because the curve is a 
normal probability density function. Frequency and density histograms both display the same exact shape. 
They differ only in their y-axis. The commands below create a density histogram. To request a frequency 
histogram, you can simply add the VSCALE=COUNT option to the HISTOGRAM statement after the / 
in the code below. 
title 'Histogram of hgt for females'; 
ods select histogram; 
proc univariate data=fdims; 
   var hgt; 
   histogram / normal; 
   output out=estimates n=n mean=mean std=std; 
run; 

We used the ODS SELECT statement to request that only the histogram be printed. The DATA statement 
specifies fdims as our data set. The VAR statement specifies hgt as the variable of interest. The 
HISTOGRAM statement requests a histogram for each variable listed in the VAR statement (in this case, 
only hgt), and the NORMAL option requests that the normal distribution curve be overlaid. The 
OUTPUT statement sends the estimates of the sample size, the mean, and the standard deviation to a new 
data set, estimates. To save time later, we can save the estimates generated from the UNIVARIATE 
procedure as macro variables. 
data _null_; 
   set estimates; 
   call symputx('n',n); 
   call symputx('mean',mean); 
   call symputx('std',std); 
run; 

The SYMPUTX function saves each variable as a macro variable. These macro variables will hold the 
sample size, mean, and standard deviation until you exit this SAS session. Because the data set is 
specified as _NULL_ (a SAS keyword), SAS saves the values to the macro variables without creating a 
data set. 
 
Exercise 2:  Based on the plot, does it appear that the data follow a nearly normal distribution? 
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Evaluating the Normal Distribution 
Eyeballing the shape of the histogram is one way to determine whether the data appear to be nearly 
normally distributed, but it can be frustrating to decide just how close the histogram is to the curve. An 
alternative approach involves constructing a normal probability plot, also called a normal Q-Q plot (for 
quantile- quantile). 
title 'Q-Q plot of hgt for females'; 
ods select qqplot; 
proc univariate data=fdims; 
   var hgt; 
   qqplot / normal(mu=est sigma=est); 
run; 

We used the ODS SELECT statement to request that only the Q-Q plot be printed. The DATA statement 
specifies fdims as the working data set. The VAR statement specifies hgt as the variable of interest. The 
QQPLOT statement requests a Q-Q plot for each variable in the VAR statement (in this case only hgt). 
The NORMAL option requests that the reference line be from a normal distribution with mean and 
standard deviation estimated from the data. A data set that is nearly normal will result in a probability 
plot where the points closely follow the line. 

Any deviations from normality lead to deviations of these points from the line. The plot for female 
heights shows points that tend to follow the line but with some errant points toward the tails. We’re left 
with the same problem that we encountered with the histogram above: how close is close enough? 

A useful way to address this question is to rephrase it as follows: what do probability plots look like for 
data that I know came from a normal distribution? We can answer this by simulating data from a normal 
distribution using a DATA step. 
data sim_norm; 
   do i=1 to &n; 
      x1=rand('NORMAL',&mean,&std); 
      output; 
   end; 
run; 

The DO loop tells SAS that we want to perform the actions in the loop n times, where n is the number of 
females in the data set. The RAND function draws a single value from a normal distribution with mean 
and standard deviation equal to those that we estimated previously. The OUTPUT statement adds the 
newly drawn random value to the data set. 

We can then generate a Q-Q plot for the simulated variable.  
title 'Q-Q plot for simulate x1'; 
ods select qqplot; 
proc univariate data=sim_norm; 
   var x1; 
   qqplot x1/ normal(mu=&mean sigma=&std); 
run; 

 
Exercise 3:  Make a normal probability plot for variable x1 in the data set sim_norm. Do all of the 
points fall on the line? How does this plot compare to the probability plot for the real data? 

Even better than comparing the original plot to a single plot generated from a normal distribution is to 
compare it to many more plots. We modify the previous data simulation syntax to generate nine simulated 
variables (although we could generate as many as we want). 
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data simulated; 
   array x {9} x1-x9; 
   do i=1 to &n; 
      do j=1 to 9; 
         x[j]=rand('NORMAL',&mean,&std); 
      end; 
      output; 
   end; 
run; 

 The Q-Q plots for the variables can then be generated as follows:  
title 'Q-Q plots for simulate x1-x9'; 
ods select qqplot; 
proc univariate data=simulated; 
   var x1-x9; 
   qqplot x1-x9 / normal(mu=&mean sigma=&std); 
run; 

 

Exercise 4:  Does the normal probability plot for hgt for females look similar to the plots created for the 
simulated data? That is, do plots provide evidence that the female heights are nearly normal? 

 

Exercise 5: Using the same technique, determine whether female weights appear to come from a 
normal distribution. 

Normal Probabilities 
Okay, so now you have a slew of tools to judge whether a variable is normally distributed. Why should 
we care? 

It turns out that statisticians know a lot about the normal distribution. When we decide that a random 
variable is approximately normal, we can answer all sorts of questions about that variable related to 
probability. Take, for example, this question: “What is the probability that a randomly chosen young adult 
female is taller than 6 feet (about 182 cm)?”2

 

If we assume that female heights are normally distributed (a very close approximation is also okay), we 
can find this probability by calculating a Z score and consulting a Z table (also called a normal 
probability table).  

In SAS, this is done in two steps. 
data temp;  
   result=1 - cdf('NORMAL',182,&mean,&std); 
run; 
 
title 'Probability of a female being taller than 182cm'; 
proc print data=temp;  
   var result; 
run; 

We make the necessary calculation within the DATA step, saving the calculation to a DATA step named 
temp. We then use the PRINT procedure to display the contents of the data set. 

2 The study that published this data set is clear to point out that the sample was not random and therefore inference to a general 
population is not suggested. We do so here only as an exercise. 
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Note that the function CDF gives the area under the normal curve below a given value with a given mean 
and standard deviation. Because we’re interested in the probability that someone is taller than 182 cm, we 
have to take 1 minus that probability. 

Assuming a normal distribution has enabled us to calculate a theoretical probability. If we want to 
calculate the probability empirically, we simply need to determine how many observations fall above 182 
and then divide this number by the total sample size. 
title 'Proportion of females taller than 182cm'; 
proc sql; 
select b.n_tall / a.n as proportion 
   from (select count(hgt) as n from fdims) as a, 
        (select count(hgt) as n_tall from fdims  
           where hgt>182) as b; 
quit; 
 
title; 

The SQL procedure uses the Structured Query Language to count the number of females (labeled a.n) and 
the number of females with heights above 182 cm (labeled b.n_tall). SQL then calculates the proportion 
of females above 182 cm as b.n_tall divided by a.n. 

Although the probabilities are not exactly the same, they are reasonably close. The closer that your 
distribution is to being normal, the more accurate the theoretical probabilities will be. 

The TITLE statement at the end of the syntax is used to clear the previous title. This ensures that if we 
forget to include or choose not to include a title for our next procedure, the output will not automatically 
be given the title Proportion of females taller than 182cm. 

Exercise 6: Write out two probability questions that you would like to answer; one regarding female 
heights and one regarding female weights. Calculate the probabilities using both the theoretical normal 
distribution as well as the empirical distribution (four probabilities in all). Which variable, height or 
weight, had a closer agreement between the two methods? 
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On Your Own 
1. Now let’s consider some of the other variables in the body dimensions data set. Using the figures on 

the next page, match the histogram to its normal probability plot. All of the variables have been 
standardized (first subtract the mean and then divide by the standard deviation), so the units won’t be 
of any help. If you are uncertain based on these figures, generate the plots in SAS to check. 

a. The histogram for female biiliac (pelvic) diameter (bii_di) belongs to normal probability plot 
letter ____. 

b. The histogram for female elbow diameter (elb_di) belongs to normal probability plot letter ____.    

c. The histogram for general age (age) belongs to normal probability plot letter        . 

d. The histogram for female chest depth (che_de) belongs to normal probability plot letter ____. 
 

2. Note that normal probability plots C and D have a slight stepwise pattern. Why do you think this is 
the case? 
 

3. As you can see, normal probability plots can be used both to assess normality and visualize 
skewness. 

Make a normal probability plot for female knee diameter (kne_di). Based on this normal probability 
plot is this variable left skewed, symmetric, or right skewed? Use a histogram to confirm your 
findings. 
 

4. What concepts from the textbook are covered in this lab? What concepts, if any, are not covered in 
the textbook? Have you seen these concepts elsewhere (for example, lecture, discussion section, 
previous labs, or homework problems)? Be specific in your answer. 
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