2.25 (a) (i) False. Instead of comparing counts, we should compare percentages of people in each group who suffered cardiovascular problems. (ii) True. (iii) False. Association does not imply causation. We cannot infer a causal relationship based on an observational study. The difference from part (ii) is subtle.
(iv) True.
(b) Proportion of all patients who had cardiovascular problems: $\frac{7,979}{227,571} \approx 0.035$
(c) The expected number of heart attacks in the rosiglitazone group, if having cardiovascular problems and treatment were independent, can be calculated as the number of patients in that group multiplied by the overall cardiovascular problem rate in the study: $67,593 * \frac{7,979}{227,571} \approx 2370$.
(d) (i) H_{0} : The treatment and cardiovascular problems are independent. They have no relationship, and the difference in incidence rates between the rosiglitazone and pioglitazone groups is due to chance. H_{A} : The treatment and cardiovascular problems are not independent. The difference in the incidence rates between the rosiglitazone and pioglitazone groups is not due to chance and rosiglitazone is associated with an increased risk of serious cardiovascular problems. (ii) A higher number of patients with cardiovascular problems than expected under the assumption of independence would provide support for the alternative hypothesis as this would suggest that rosiglitazone increases the risk of such problems. (iii) In the actual study, we observed 2,593 cardiovascular events in the rosiglitazone group. In the 1,000 simulations under the independence model, we observed somewhat less than 2,593 in every single simulation, which suggests that the actual results did

3 Probability

3.1 (a) False. These are independent trials. (b) False. There are red face cards. (c) True. A card cannot be both a face card and an ace.
3.3 (a) 10 tosses. Fewer tosses mean more variability in the sample fraction of heads, meaning there's a better chance of getting at least 60% heads. (b) 100 tosses. More flips means the observed proportion of heads would often be closer to the average, 0.50 , and therefore also above 0.40 . (c) 100 tosses. With more flips, the observed proportion of heads would often be closer to the average, 0.50 . (d) 10 tosses. Fewer flips would increase variability in the fraction of tosses that are heads.

[^0]not come from the independence model. That is, the variables do not appear to be independent, and we reject the independence model in favor of the alternative. The study's results provide convincing evidence that rosiglitazone is associated with an increased risk of cardiovascular problems.
2.27 (a) Decrease: the new score is smaller than the mean of the 24 previous scores. (b) Calculate a weighted mean. Use a weight of 24 for the old mean and 1 for the new mean: $(24 \times 74+1 \times 64) /(24+1)=$ 73.6. (c) The new score is more than 1 standard deviation away from the previous mean, so increase.
2.29 No, we would expect this distribution to be right skewed. There are two reasons for this: (1) there is a natural boundary at 0 (it is not possible to watch less than 0 hours of TV), (2) the standard deviation of the distribution is very large compared to the mean.
2.31 The distribution of ages of best actress winners are right skewed with a median around 30 years. The distribution of ages of best actor winners is also right skewed, though less so, with a median around 40 years. The difference between the peaks of these distributions suggest that best actress winners are typically younger than best actor winners. The ages of best actress winners are more variable than the ages of best actor winners. There are potential outliers on the higher end of both of the distributions.

3.7 (a) No, there are voters who are both independent and swing voters.
(b)

(c) Each Independent voter is either a swing voter or not. Since 35% of voters are Independents and 11% are both Independent and swing voters, the other 24% must not be swing voters. (d) 0.47 . (e) 0.53 . (f) $\mathrm{P}($ Independent $) \times \mathrm{P}($ swing $)=0.35 \times 0.23=0.08$, which does not equal P (Independent and swing) $=$ 0.11 , so the events are dependent.
3.9 (a) If the class is not graded on a curve, they are independent. If graded on a curve, then neither independent nor disjoint - unless the instructor will only give one A , which is a situation we will ignore in parts (b) and (c). (b) They are probably not independent: if you study together, your study habits would be related, which suggests your course performances are also related. (c) No. See the answer to part (a) when the course is not graded on a curve. More generally: if two things are unrelated (independent), then one occurring does not preclude the other from occurring.
3.11 (a) $0.16+0.09=0.25$. (b) $0.17+0.09=0.26$. (c) Assuming that the education level of the husband and wife are independent: $0.25 \times 0.26=0.065$. You might also notice we actually made a second assumption: that the decision to get married is unrelated to education level. (d) The husband/wife independence assumption is probably not reasonable, because people often marry another person with a comparable level of education. We will leave it to you to think about whether the second assumption noted in part (c) is reasonable.
3.13 (a) No, but we could if A and B are independent. (b-i) 0.21 . (b-ii) 0.79 . (b-iii) 0.3 . (c) No, because $0.1 \neq 0.21$, where 0.21 was the value computed under independence from part (a). (d) 0.143.
3.15 (a) No, 0.18 of respondents fall into this combination. (b) $0.60+0.20-0.18=0.62$. (c) $0.18 / 0.20=$ 0.9 . (d) $0.11 / 0.33 \approx 0.33$. (e) No, otherwise the answers to (c) and (d) would be the same. (f) $0.06 / 0.34 \approx 0.18$.
3.17 (a) No. There are 6 females who like Five Guys Burgers. (b) $162 / 248=0.65$. (c) $181 / 252=0.72$. (d) Under the assumption of a dating choices being independent of hamburger preference, which on the surface seems reasonable: $0.65 \times 0.72=0.468$. (e) $(252+6-1) / 500=0.514$.
3.19 (a)

(b) 0.84
3.21 0.0714. Even when a patient tests positive for lupus, there is only a 7.14% chance that he actually has lupus. House may be right.

3.23 (a) 0.3 . (b) 0.3 . (c) 0.3 . (d) $0.3 \times 0.3=0.09$. (e) Yes, the population that is being sampled from is identical in each draw.
3.25 (a) $2 / 9 \approx 0.22$. (b) $3 / 9 \approx 0.33$. (c) $\frac{3}{10} \times \frac{2}{9} \approx$ 0.067. (d) No, e.g. in this exercise, removing one chip meaningfully changes the probability of what might be drawn next.
3.27 $P\left({ }^{1}\right.$ leggings, ${ }^{2}$ jeans, ${ }^{3}$ jeans $)=\frac{5}{24} \times \frac{7}{23} \times \frac{6}{22}=$ 0.0173 . However, the person with leggings could have come 2 nd or 3 rd , and these each have this same probability, so $3 \times 0.0173=0.0519$.
3.29 (a) 13. (b) No, these 27 students are not a random sample from the university's student population. For example, it might be argued that the proportion of smokers among students who go to the gym at 9 am on a Saturday morning would be lower than the proportion of smokers in the university as a whole.
3.31 (a) $\mathrm{E}(\mathrm{X})=3.59$. $\mathrm{SD}(\mathrm{X})=9.64$. (b) $\mathrm{E}(\mathrm{X})=$ -1.41 . $\mathrm{SD}(\mathrm{X})=9.64$. (c) No, the expected net profit is negative, so on average you expect to lose money.
3.335% increase in value.
$3.35 \mathrm{E}=-0.0526$. $\mathrm{SD}=0.9986$.
3.37 Approximate answers are OK.
(a) $(29+32) / 144=0.42$. (b) $21 / 144=0.15$.
(c) $(26+12+15) / 144=0.37$.
3.39 (a) Invalid. Sum is greater than 1. (b) Valid. Probabilities are between 0 and 1 , and they sum to 1. In this class, every student gets a C. (c) Invalid. Sum is less than 1. (d) Invalid. There is a negative probability. (e) Valid. Probabilities are between 0 and 1 , and they sum to 1 . (f) Invalid. There is a negative probability.
3.410 .8247.

3.43 (a) $\mathrm{E}=\$ 3.90$. $\mathrm{SD}=\$ 0.34$.
(b) $\mathrm{E}=\$ 27.30 . \mathrm{SD}=\$ 0.89$.
$3.45 \operatorname{Var}\left(\frac{X_{1}+X_{2}}{2}\right)$
$=\operatorname{Var}\left(\frac{X_{1}}{2}+\frac{X_{2}}{2}\right)$
$=\frac{\operatorname{Var}\left(X_{1}\right)}{2^{2}}+\frac{V_{\operatorname{ar}\left(X_{2}\right)}^{2^{2}}}{}$
$=\frac{\sigma^{2}}{4}+\frac{\sigma^{2}}{4}$
$=\sigma^{2} / 2$
3.47 $\operatorname{Var}\left(\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}\right)$
$=\operatorname{Var}\left(\frac{X_{1}}{n}+\frac{X_{2}}{n}+\cdots+\frac{X_{n}}{n}\right)$
$=\frac{\operatorname{Var}\left(X_{1}\right)^{1}}{n^{2}}+\frac{V^{n}\left(X_{2}\right)}{n^{2}}+\cdots+\frac{\operatorname{Var}\left(X_{n}\right)}{n^{2}}$
$=\frac{\sigma^{2}}{n^{2}}+\frac{\sigma^{2}}{n^{2}}+\cdots+\frac{\sigma^{2}}{n^{2}}$ (there are n of these terms)
$=n \frac{\sigma^{2}}{n^{2}}$
$=\sigma^{2} / n$

[^0]: 3.5 (a) $0.5^{10}=0.00098$. (b) $0.5^{10}=0.00098$.
 (c) $P($ at least one tails $)=1-P($ no tails $)=1-$ $\left(0.5^{10}\right) \approx 1-0.001=0.999$.

