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NOTE: This supplement to the first edition is being released online as supplemental Chapter 9. Its
pagination corresponds to the printed first edition text. The hyperlinks to sections and equations do not
work, but the references are correct. This supplement includes a set of exercises and solutions to the
odd-numbered exercises. The data used in this chapter is in the supplement to the oibiostat data package
and can be downloaded executing the following command in the R console:

devtools::install_github("OI-Biostat/oi_biostat_data", ref = "supplements")

Logistic regression is used to explore relationships between a response variable
with two possible values (e.g., yes/no, success/failure, 0/1, etc.) and one or more
predictor variables. The logistic regression model estimates the odds of an
outcome given a predictor, and the odds ratio (OR) associated with change in the
value of a predictor; in certain cases, the model also estimates the probability of
an outcome given a predictor.

For labs, slides, and other resources, please visit
www.openintro.org/book/biostat

http://www.openintro.org/redirect.php?go=stat&referrer=biostat1_pdf
http://www.openintro.org/redirect.php?go=biostat&referrer=biostat1_pdf
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9.1 Chapter overview

This chapter focuses on traditional methods of inference for logistic regression that are
commonly used in epidemiology and public health, with emphases on both inference for model
parameters and prediction. The interpretation and use of logistic models for inference is
contained in the three sections following this overview; these sections contain the core material
used in many applications in medical research, epidemiology and public health.

The last two sections describe methods for assessing the fit of a logistic model, both for
inference and for prediction, and present an extended case study using logistic regression to
modify and evaluate a triage system in hospital emergency departments. The section on assessing
fit is longer than most sections in the book, but the material is necessary for understanding the
behavior of the proposed triage system. Since model predictions are sometimes used as diagnostic
tools, it is particularly important to understand the strengths and weaknesses of a model, as well
as methods for estimating error rates.

Logistic regression relies heavily on software. Even the simplest models cannot be fit by
hand; direct formulas for parameter estimates and standard errors do not exist. Consistent with
earlier chapters, the treatment here emphasizes interpretation of both models and computer
output for estimated models. For students interested in working directly with data the chapter
labs contain R-based exercises that illustrate how to fit and interpret models to data.

Logistic regression has also become an important tool in data exploration and detecting
patterns in data and is now widely used in machine learning. There is not space here to explore
those ideas, but Chapter 9 of OpenIntro Statistics, 4th ed. examines building a logistic regression
explanatory model for possible bias in the review of resumes submitted for a listed job opening.
That material can serve as an introduction to data exploration with logistic regression.
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9.2 Introduction to simple logistic regression

9.2.1 The model for simple logistic regression

Hyperuricemia is the presence of abnormally high levels of uric acid in the blood, a condition
than can lead to kidney stones and gout; hyperuricemia may also be responsible for chronic
kidney disease, cardiovascular disease, and other metabolic disorders. According to current
criteria, men are diagnosed as having hyperuricemia if a uric acid measurement is at least as high
as 416µmol/L. The cutoff for women is 360µmol/L. Research suggests that risk of hyperuricemia
is correlated with the consumption of red meat, seafood, and beans. Hyperuricemia is more
common in high-income countries and economically developing countries with Western diets
(characterized by high daily intake of saturated fats, animal protein, sodium, and refined sugars).
The prevalence of hyperuricemia ranges between 15% and 25% in Asian countries.

Hyperuricemia is present without symptoms approximately 30% of the time, so it would be
useful to identify clinical measurements indicative of hyperuricemia; i.e., measurements signaling
that a patient should have their uric acid level tested.

Wang, et al.1 report a cross-sectional study examining the association of hyperuricemia with
dietary magnesium in 5,168 participants in China. The study measured several other possible
predictors, including body mass index (BMI,measured in kg/m2.). Some literature has suggested
that BMI has a strong association with hyperuricemia in various populations. This section
explores that relationship in a random sample of 500 participants from the Zeng study. The full
dataset (hyperuricemia) and the random sample (hyperuricemia.samp) are in the data package
oibiostat.

Figure 9.1 shows the presence of hyperuricemia on the y-axis and BMI on the x-axis. The
light blue dots represent (xi , yi) pairs for each individual in the sample of 500, where xi is an
individual’s BMI and yi equals 0 (hyperuricemia absent) or 1 (hyperuricemia present). A small
amount of random noise has been added to the y-values (referred to as "jittering") to make it
easier to see where the points are most densely clustered.

The blue dots at y = 0 cluster between BMI values of about 17 to 30, while the dots at y = 1
are most concentrated around BMI 23 to 28, confirming that hyperuricemia is associated with
larger values of BMI. It still difficult, however, to see enough details to judge the strength of
association from this plot. For example, while this plot clearly implies that an individual with
BMI lower than 22 is unlikely to have hyperuricemia (since practically all points with BMI less
than 22 have y = 0), it is not clear how to judge the risk of hyperuricemia for individuals with
moderate values of BMI, since points with BMI around 25 exist at both y = 0 and y = 1.

Computing summary measures can provide further insight about the association between
hyperuricemia and BMI.

1Chao Zeng et al. “Association between low serum magnesium concentration and hyperuricemia”. In: Magnesium
research 28.2 (2015), pp. 56–63.
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Figure 9.1: Presence of hyperuricemia versus BMI. For each case of yi = 1 if hype-
ruricemia is present (labeled Yes on the vertical axis) and yi = 0 if hyperuricemia
is absent (labeled No). The y values have been jittered. The mean BMI in each
group is marked by an "x".

EXAMPLE 9.1

The World Health Organization (WHO) labels BMI ≥ 30 as obese and 25 ≤ BMI < 30 as overweight
or pre-obese.a In the sample of 500 participants from the Zeng study, 204 individuals had BMI ≥
25. Of these individuals, 57 had hyperuricemia. Compute the probability and odds that a study
participant with BMI ≥ 25 has hyperuricemia.

Among these 204 participants, if 57 had hyperuricemia then the estimated conditional probability
of hyperuricemia in this group is 57/204 = 0.279. Odds as a summary measure for binary data are
discussed in Section 8.5.3. Briefly, the odds of an outcome is the ratio of the number of times an
outcome occurs divided by the number of times it does not; thus, the odds of hyperuricemia in
these 204 study participants equals 57/(204− 57) = 0.388.

aSee Section 9.7 for a discussion on the use of these cut-points in Asian populations

In the sample of 500 individuals, 95 were hyperuricemic and 405 were not, so the estimated
probability and odds of hyperuricemia based on the sample of 500 are 95/500 = 0.190 and
95/405 = 0.235, respectively. An individual drawn at random from the entire study sample has a
lower probability of being hyperuricemic than an individual drawn at random from the
participants with BMI ≥ 25: probability 0.235 versus 0.279. Thus, these data suggest an
association between BMI and hyperuricemia; specifically, that larger BMI is associated with
increased risk of hyperuricemia. This is consistent with the trend visible in Figure 9.1.

Figure 9.2 shows the prevalence of hyperuricemia by quintile of BMI. Quintiles divide the
study sample into five groups of equal size, so each row of the table has 100 observations. With
increasing BMI quintile, the estimated probability and odds of hyperuricemia increase. In the
lowest quintile, in which average BMI is 20.08, the probability of hyperuricemia is 0.05 and the
odds of hyperuricemia are 0.053. In the highest quintile, in which average BMI is 28.92, the
probability and odds of hyperuricemia are larger: 0.32 and 0.471, respectively.

Probabilities and odds are not identical but they provide similar information. Odds and
probabilities increase or decrease together, and one can be calculated from the other. If p is the
probability of an event, p/(1− p) are the odds. Algebra can be used to show that
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p = odds/(1 + odds).

BMI Quintile Mean BMI HU Absent HU Present Est. Probability Est. Odds
1 20.08 95 5 0.05 0.053
2 22.55 85 15 0.15 0.176
3 24.32 82 18 0.18 0.220
4 25.84 75 25 0.25 0.333
5 28.92 68 32 0.32 0.471

Figure 9.2: Hyperuricemia (HU) by quintiles of BMI. Each row provides infor-
mation within a specific BMI quintile: average BMI, number of individuals with
and without hyperuricemia, and the estimated probability and estimated odds of
hyperuricemia.

GUIDED PRACTICE 9.2

Using the algebraic relationship between probability and odds, show that if the probability of hy-
peruricemia is 0.05, the odds of hyperuricemia are 0.053. Additionally, show that if the odds of
hyperuricemia are 0.471 then the probability equals 0.32.2

Dividing the study sample into smaller groups and computing summary measures will
provide more detail about how risk of hyperuricemia varies with individual BMI values. The dark
blue circles in Figure 9.3 represent information obtained from grouping individuals into
2nd-percentiles, just as Figure 9.2 groups individuals by every 20th percentile; i.e., the 500 cases
have been split into 50 groups of 10 cases per group. Each dark blue circle has x-value equal to
the mean BMI within the group and y-value equal to the proportion of individuals with
hyperuricemia within the group. The dark blue circles more clearly demonstrate that larger BMI
tends to be associated with increased estimated probability of hyperuricemia than the light blue
circles representing the observed data.

The green line in Figure 9.3 is the least squares line for a model predicting hyperuricemia
from BMI. Since the mean of a binary variable taking on values 0 and 1 equals the estimated
probability of the variable taking on the value 1 (i.e., the proportion of times that y = 1), the linear
model estimates the probability of hyperuricemia at each value of BMI. While the line mostly fits
the data reasonably well, it shows a lack of fit at the smallest BMI values where it predicts
probabilities less than 0.

The least squares line in Figure 9.3 is based on the model

E(Yi) = P (Yi = 1)

= β0 + β1(bmi),

where Yi has value 1 when hyperuricemia is present and 0 otherwise. The green line drops below
0 for the smaller values of BMI because the linear model does not restrict predicted values to lie
between 0 and 1. The red curve, which shows a model-based estimate of the probability of
hyperuricemia using logistic regression, is a better fit to the data across the range of BMI values.

Suppose E is an event, x is a predictor, and pE(x) is the conditional probability of E given x.
The odds of E given x are pE(x)/(1− pE(x)). The simple logistic regression model for the odds of E
given x is a linear model on the log(odds) scale. Just as in least squares linear regression, the
right-hand side of the model is a linear combination of parameters (the intercept and slope) and x:

log
(
pE(x)

1− pE(x)

)
= β0 + β1x, (9.3)

2If p = 0.05, compute the odds as p/(1 − p) = 0.05/(1 − 0.05) = 0.053. If the odds are 0.471, compute the probability as
odds/(1 + odds) = 0.471/(1 + 0.471) = 0.32.
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Figure 9.3: Estimated probability of hyperuricemia versus BMI. The small light
blue dots show observed (xi , yi) pairs. Each large blue dot represents the pro-
portion of individuals with hyperuricemia in each 2nd-percentile; i.e., each group
when the sample is divided into 50 groups based on BMI. The green line is the
least squares model for hyperuricemia versus BMI. The red curve is a logistic
model for hyperuricemia versus BMI.

or, equivalently,

log(oddsE(x)) = β0 + β1x. (9.4)

Exponentiating both sides of Equation 9.4 yields

oddsE(x)) = exp(β0 + β1x)

= exp(β0)exp(β1x). (9.5)

If Y is a binary variable with value 1 when E occurs and 0 otherwise, Equation 9.5 is a model
for the odds that Y = 1, given x.

Probabilities can be estimated using the relationship

pE(x) =
oddsE(x)

1 + oddsE(x)

=
exp(β0 + β1x)

1 + exp(β0 + β1x)
. (9.6)

Software used to estimate logistic regression usually provides estimates for log(odds) in the
form of Equation 9.3, and the conversion to odds or probabilities is done with either a separate
step in the program or by hand.
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GUIDED PRACTICE 9.7

Suppose the logistic regression model for an event E is given by

log(oddsE(x)) = β0 + β1x

= 0.5− 0.75x.

Calculate the odds and probability of E when x = 1.0. 3

Computer algorithms that estimate the parameters in logistic regression use the method of
maximum likelihood. Since a logistic regression model can be converted to a model for the
probability of an event E given set of predictors, these probabilities can be used to write an
algebraic expression for the probability of a set of observed responses given the predictors (details
shown in more advanced courses). This expression is called the likelihood of the data; the method
of maximum likelihood selects estimates for β0 and β1 that make the likelihood as large as
possible.

The estimated logistic regression model shown in the red curve in Figure 9.3 is explored in
Section 9.2.3.

The log in Equation 9.3 is loge, the natural logarithm function. Since the natural log is used
often in statistics, the subscript e is usually omitted. The transformation log( p

1−p ) has its own

name, the logit function.4

3The log(odds) are 0.5−0.75(1) = −0.25, so the odds and probability are, respectively, exp(−0.25) = 0.779 and 0.779/(1+
0.779) = 0.438.

4Specifically, logit(p) = log( p
1−p ).
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9.2.2 Interpreting model parameters

Figure 9.4 shows the relationship between probability and the value of a predictor x for four
different models of the form specified by Equation 9.6. The model coefficients (β0,β1) are (-3.0,
0.6) for the solid line, (-3.0, 0.8) for the dashed line, (3.0, -0.6) for the dotted line, and (-0.4, 0.0)
for the horizontal line.

The model parameter β1 determines the relationship between predicted probabilities and
values of the predictor x. The solid and dashed lines show a positive association; when β1 > 0,
probabilities increase with increasing values of the predictor x. Since odds and probabilities
increase together, positive values of β1 indicate that the odds of an event increase with increasing
values of x. A larger positive value for β1 indicates of a stronger positive association. The dashed
line, which has a larger β1 than the solid line, shows a steeper incline in the center of the graph.
Probabilities change more rapidly with changing values of x. The dotted line shows a negative
association; when β1 < 0, probabilities and odds decrease with increasing values of x. Probability
starts out near 1 when x is small, then decreases to near 0 once x increases to 10. The horizontal
line with β1 = 0 shows no association between the event and values of x.
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Figure 9.4: Probability versus a predictor x for four models of the form specified
by Equation 9.6. The model coefficients (β0,β1) are (-3.0, 0.6) for the solid line,
(-3.0, 0.8) for the dashed line, (3.0, -0.6) for the dotted line, and (-0.4, 0.0) for the
horizontal line.

9.2.3 Hyperuricemia and BMI

If E is hyperuricemia and x = bmi, the logistic regression model for the association between
hyperuricemia and BMI is

log
[
p(E|bmi)

1− p(E|bmi)

]
= β0 + β1(bmi),

or, equivalently,

log(oddsE(bmi)) = β0 + β1(bmi). (9.8)

Figure 9.5 shows the result of using R to estimate the coefficients in Equation 9.8. The
‘Intercept’ is the estimate b0 of β0 and the term labeled ‘bmi’ is the estimate b1 of β1.
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Figure 9.5: Estimated logistic regression coefficients for the association of hyper-
uricemia with BMI.

Expressed algebraically, the estimated model is

log(�oddsE(bmi)) = −6.054 + 0.185(bmi). (9.9)

The red curve in Figure 9.3 is drawn using this estimated model after log(odds) were
converted to probabilities, just as in Guided Practice 9.7. For example, a member of the study
population with BMI 30.0 has an estimated log(odds) of hyperuricemia of
−6.054 + (0.185)(30) = −0.504. To compute the odds, exponentiate the estimated log odds:
exp(log(�odds)) = exp(−0.504) = 0.604. Then, convert from odds to probability: the predicted
probability of hyperuricemia for an individual with BMI 30.0 is 0.604/(1 + 0.604) = 0.377. If these
data represent a random sample from a large population, about 38% of individuals with BMI = 30
are predicted to have hyperuricemia.

Just as with 2× 2 tables, probabilities can be estimated with logistic regression in either
cross-sectional studies or studies with exposure based sampling; the hyperuricemia study was a
cross-sectional study, so probabilities can be estimated using the estimated model. This issue is
discussed in detail for 2× 2 tables in Section 8.6.6 in the web supplement and is part of the
assumptions for logistic regression listed in Section 9.3.

The coefficient 0.185 has an interpretation similar to a slope in linear regression: every one
unit change in BMI is associated with an additive increase of 0.185 in the log odds of
hyperuricemia.

EXAMPLE 9.10

Suppose two members of the study population have BMI values 30.0 and 33.2. What is the esti-
mated relative odds for hyperuricemia (i.e., the odds ratio), comparing the individual with BMI =
33.2 to the one with BMI = 30.0?

When BMI = 33.2, the estimated log odds of hyperuricemia are

log[�oddsE(bmi = 33.2)] = −6.054 + (0.185)(33.2) = 0.088,

and the estimated odds of hyperuricemia are exp(0.088) = 1.092. The estimated odds of hyper-
uricemia for an individual with BMI 30.0 are 0.604 (calculated earlier).

The estimated OR comparing these two individuals is 1.092/0.604 = 1.808. The odds of hyper-
uricemia are estimated to be 1.8 times as large for an individual with BMI 33.2 versus an indi-
vidual with BMI 30.0. This model is consistent with the data in Figure 9.2 and suggests there is
indeed a strong association between BMI and the odds of hyperuricemia, as others have found. The
tools of inference discussed in Section 9.3 will show that this association is stronger than would be
expected by chance alone under the assumption the null hypothesis of no association is true.

Odds ratios can be calculated directly from the coefficients in the model. Since the model for
logistic regression is

log(odds(x)) = β0 + β1x,
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the difference in log odds for two values x1 and x2 is

log[odds(x2)]− log[odds(x1)] = β1(x2 − x1).

The relationship

log(b)− log(a) = log(b/a)

implies that

log
[

odds(x2)
odds(x1)

]
= β1(x2 − x1)

and

odds(x2)
odds(x1)

= exp[β1(x2 − x1)]. (9.11)

Suppose two members of a population have BMI values given by x1 = bmi1 and x2 = bmi2.
The estimated odds ratio comparing these two individuals is

ÔR = odds(bmi1)/odds(bmi2)

= exp[0.185(bmi2−bmi1)].

If two values of BMI differ by 1, the odds ratio (OR) will be e0.185 = 1.20. For every one unit
increase in bmi, the odds changes by a factor of 1.20. When calculating a change in odds using the
model coefficients, the intercept plays no role, just as in similar calculations in linear regression.
More generally, in the model in Equation 9.3, β1 and exp(β1) are, respectively, the difference in
log(odds) and the OR between two cases when x changes by 1 unit.

GUIDED PRACTICE 9.12

Suppose two members of the study population have a BMI of 26 and 28, respectively. Calculate
the odds of hyperuricemia for each of them using model 9.9. Calculate the relative odds (i.e., odds
ratio) for an individual with BMI 28 compared to BMI 26. 5

GUIDED PRACTICE 9.13

Calculate the relative odds of hyperuricemia for the two individuals with BMI 26 and 28 by using
the coefficients in the logistic regression model directly, i.e., without calculating the individual
odds. 6

The model can also be used to estimate prevalence ratios as discussed in Section 8.6.1.

5The odds of hyperuricemia for the two individuals are exp[−6.054+(0.185)(26)] = 0.288 and exp[−6.054+(0.185)(28)] =
0.417. The relative odds are 0.417/0.288 = 1.45.

6Using the model coefficient, the relative odds is exp[(2)(0.185)] = 1.45.
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EXAMPLE 9.14

What is the estimated prevalence (i.e. probability) of hyperuricemia for two individuals with BMI
30.0 and 33.2? What is the estimated prevalence ratio for hyperuricemia, comparing the individual
with BMI = 33.2 to the one with BMI = 30.0?

As mentioned earlier, the hyperuricemia data were collected in a cross-sectional study, so probabil-
ities can be estimated (estimated probabilities were used to construct the red curve in Figure 9.3).

For these two individuals, the estimated probabilities of hyperuricemia are

p̂E(33.2) =
1.092

1 + 1.092
= 0.522

and

p̂E(30.0) =
0.604

1 + 0.604
= 0.377.

The prevalence ratio, comparing the participant with BMI = 33.2 to the one with BMI = 30.0 is
0.522/0.377 = 1.38; the prevalence of hyperuricemia for individual with BMI = 33.2 is estimated
to be almost 1.4 times (40% larger) that of the individual with the lower BMI. Using the language
of Section 8.6, the relative risk of hyperuricemia for an individual with a BMI of 33.2 vs 30.0 is
approximately 1.4.

9.2.4 Checking model fit, hyperuricemia and BMI

This section describes a graphical method for checking the fit of a logistic model with a single
continuous predictor, such as BMI. Methods for checking fit that use the inferential properties of
logistic regression are discussed in Section 9.5.

Figure 9.6 shows values of the outcome variable Y = 0 (no hyperuricemia) or Y = 1
(hyperuricemia) plotted against model predicted probabilities. It is the analogue of plotting
observed versus predicted values in linear regression, but because all the observed values are
clustered at 0 or 1, it is less useful as a diagnostic than in linear regression. As noted earlier, close
inspection of the plot indicates that larger predicted probabilities tend to have a increased
frequency of Y = 1, but the trend is subtle.

Grouping observations reduces the variability in a plot and can sometimes be helpful in
checking a model. Figure 9.22 shows the same plot as in Figure 9.6, but with the addition of
summary statistics computed within 10 equally sized buckets of size 50. Each group is formed
based on the predicted probability of hyperuricemia. For instance, the left-most point represents
the group consisting of the 50 cases with the smallest predicted probabilities of hyperuricemia
based on the model, which range between 0.043 to 0.091. Within this group, 2 individuals (a
proportion of 2/50 = 0.04) were hyperuricemic and the average predicted probability was 0.076,
so the point is at (0.076,0.040). The vertical lines show 95% confidence intervals for each
estimated proportion. If the logistic regression is a good fit, the estimated proportions and
average predicted probabilities should be similar in each decile; the dashed line y = x shows the
extent to which the observed proportions and predicted probabilities agree. Since all of the
confidence intervals touch the dashed line, the model seems to fit reasonably well.

With larger datasets, it is possible to obtain a clearer picture of the fit by increasing the
number of buckets and/or the number of observations in each bucket.
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Figure 9.6: Predicted probabilities versus observed values of hyperuricemia.
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Figure 9.7: Predicted probabilities versus observed proportions, with data
grouped according into 10 equal sized buckets of predicted probabilities. The
light blue dots at y = 0 and y = 1 denote observed values of hyperuricemia (0 =
"No", 1 = "Yes") plotted against predicted probabilities.

Figure 9.22 is a type of calibration plot discussed in more detail in Section 9.5.
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9.3 Inference for simple logistic regression

How strong is the evidence for the association between BMI and hyperuricemia?
All models estimated from data have inherent uncertainty in the estimated parameters. The

standard errors of estimated parameters are a reminder to pay attention to the margin of error of
statistical estimates. Just as in linear regression, standard errors are used to calculate test statistics
and confidence intervals.

Confidence intervals and tests for parameters in simple logistic regression will be valid if the
assumptions behind the model are met, at least approximately.

ASSUMPTIONS FOR SIMPLE LOGISTIC REGRESSION

Let E be an event and Y a binary response variable that is 1 if E has occurred and 0 if not.
Let X be a predictor thought to be related to the occurrence of E. A sample of observations
(x1, y1), (x2, y2) . . . (xn, yn) can be used to estimate the log(odds) of the occurrence of E (equiva-
lently that Y = 1) given X = x using model 9.3 under the following conditions:

1. The logistic transformation is thought to be a reasonable model for the dependence of
conditional probability or odds for the response variable given the predictor.

2. The observations are independent pairs, i.e., no single pair depends on any of the others.

3. If the sample was drawn using exposure-based or cross-sectional sampling, the condi-
tional odds and probability of E given x can be estimated using relationships 9.5 and
9.6. These estimates can be used to estimate odds and prevalence ratios.

4. If the data are from a case-control study (i.e., outcome-based sampling) in which the
sampling did not depend on exposure, conditional odds can be estimated but conditional
probabilities cannot. Odds ratios can be estimated from the model, but prevalence ratios
cannot.

Assumption 1 is more difficult to check than the usual linearity assumption in linear
regression, but for continuous predictors such as BMI, scatterplots such as Figure 9.3 or Figure 9.6
can be helpful. Other diagnostic plots can be found in more advanced texts. For binary predictors,
the model is generally reasonable.

Assumptions 2 - 4 depend on the study design. Assumption 2 is the standard assumption of
independent observations. Assumptions 3 and 4 are analogous to the connection between study
design and parameters that can be estimated in an analysis of 2× 2 tables, where the usual
calculation of risk ratio leads to a biased estimate in case-control studies. The formula for
transforming an odds to a probability in a logistic model can be calculated but leads to incorrect
estimates of probabilities. Section 8.6.6 contains a discussion of this issue in 2× 2 tables.

In the logistic model given by Equation 9.3, a test of the null hypothesis β1 = 0 is a test of no
association between the predictor x and the odds or the probability of E; i.e., a test of the null
hypothesis that x provides no information for predicting E.

As with all statistical models, tests and intervals are based on the sampling distributions of
estimated parameters.
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SAMPLING DISTRIBUTIONS OF ESTIMATED COEFFICIENTS

Suppose �log(oddsE(x)) = b0 + b1x

is an estimated logistic regression model from a dataset with n observations on the outcome E
and predictor x. The standardized statistic

b1 − β1

s.e.(b1)

has a standard normal (z) distribution in moderate to large sample sizes.
Consequently, under the hypothesis H0 : β1 = 0, the statistic

b1

s.e.(b1)

has a standard normal (z) distribution in moderate to large sample sizes.

The sampling distribution for the estimated regression coefficient b1 does not depend on the
sample size n, unlike the t-based sampling distribution for a regression coefficient in linear
regression, where the degrees of freedom depends on the sample size. One useful guideline for an
adequately-sized sample is that there should be at least 10 cases in the dataset with the less
frequent yes/no outcome.

TESTING A HYPOTHESIS ABOUT A LOGISTIC REGRESSION COEFFICIENT

A test of the two-sided hypothesis

H0 : β1 = 0 vs. HA : β1 , 0

is rejected with significance level α when

|b1|
s.e.(b1)

> z? ,

where z? is the point on a z-distribution with area (1−α/2) in the left tail.

For one-sided tests, z? is the point on a z-distribution with area (1−α) in the left tail. A
one-sided test of H0 against HA : β1 > 0 rejects when the standardized coefficient b1/s.e.(b1) is
greater than z? ; a one-sided test of H0 against HA : β1 < 0 rejects when the standardized coefficient
is less than −z? .

CONFIDENCE INTERVALS FOR A LOGISTIC REGRESSION COEFFICIENT

A two-sided 100(1−α)% confidence interval for the model coefficient β1 is

b1 ± [s.e.(b1)× z?].

All statistical software packages provide standard errors (s.e.) of coefficients, and most
provide the z statistic and its p-value directly. The estimate b0 has a sampling distribution as well,
but since the coefficient is often not scientifically meaningful, tests and intervals for β0 are not
discussed here.

Inference for the association of BMI with hyperuricemia can be based on the more complete
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table of output from R shown in Figure 9.8 (output has been rounded to two or three significant
digits for readability). The assumptions for logistic regression seem reasonable for this example.
Figure 9.3 suggests that the probability of hyperuricemia follows a logistic function as BMI
increases, and assumptions 2 and 3 are satisfied since this was a cohort study with independent
data from the participants. In the sample of 500, 95 were hyperuricemic and 405 were not, so the
sample size is sufficient.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.054 0.947 -6.39 < 0.001

bmi 0.185 0.037 4.99 < 0.001

Figure 9.8: Logistic regression with response variable hyperuricemia and predic-
tor BMI.

The inferential results show that the positive association between BMI and log(odds) (and
consequently the odds) of hyperuricemia is statistically significant (p < 0.001, z statistic 4.99); i.e.,
the observed association is larger than would be expected by chance if there were no population
level association. The data in the Zeng study support the increased prevalence of hyperuricemia
with increasing BMI found in other studies and populations.

As always, p-values and parameter estimates in should be interpreted with care, but there are
issues that arise in observational studies. Estimates of association should not be given a causal
interpretation, and even estimates of association may be subject to confounding. It is common in
observational studies to examine more than one association, leading to the possibility of inflated
type I error from multiple testing. The hyperuricemia study was primarily intended to study the
association between hyperuricemia and dietary magnesium, not hyperuricemia and BMI. The
analysis presented here is not one planned by the study team.

Confidence intervals for estimated parameters are more informative than z statistics and
p-values and are the preferred method for conveying inferential results. However, confidence
intervals are subject to the same sources of bias and lack of generalizability as test statistics and
should also be interpreted with caution.

Confidence intervals for β1 in logistic regression are on the log(odds) scale and not easily
interpreted. Exponentiating the lower and upper bounds of a confidence interval for β1 yields a
confidence interval for exp(β1) on the odds scale.

In the hyperuricemia example, the 95% confidence interval for the coefficient of BMI on the
odds scale:

0.185± (1.96)(0.037) −→ (0.113,0.258) −→ (e0.113, e0.258) = (1.119,1.294).

These data suggest that with 95% confidence, an increase of 1 unit BMI is associated with a
larger odds of hyperuricemia by a factor of 1.1 to 1.3.
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EXAMPLE 9.15

Calculate and interpret a 95% confidence interval for the odds ratio of hyperuricemia comparing
two individuals with BMI 33 and 30.

First compute a confidence interval for 3β1, then exponentiate the endpoints of the interval to
convert to the odds scale. The estimated log odds ratio for participants whose BMI differ by 3 is
3b1 = (3)(0.185) = 0.555. The standard error for 3b1 can be computed based on rules for linear
transformations of random variables. Since Var(aX) = a2Var(X) (where a is a constant and X is a
random variable), SD(3b1) = (3)SD(b1) = (3)(0.037) = 0.111. Thus, the 95% confidence interval for
the OR for two individuals with BMI values that differ by 3 is calculated as

0.555± (1.96)(0.111) −→ (0.337,0.773) −→ (1.401,2.165).

Since computing a confidence interval for aβ1 on the log(odds) scale involves multiplying both b1

and its standard error by a factor of a, the confidence interval for aβ1 can be obtained by simply
multiplying both endpoints of the confidence interval for β1 by a:

((0.113)(3), (0.258)(3)) = (0.339,0.774).

This interval differs slightly from the one computed previously only due to rounding of the original
confidence interval bounds. If no rounding is done in the intermediate calculations, the confidence
interval on the odds scale is (1.401,2.165).

These data suggest that with 95% confidence, the odds ratio of hyperuricemia for participants with
a BMI of 33 versus 30 is between 1.40 and 2.17. The individual with BMI larger by 3 units has
a odds of hyperuricemia that may be from 1.40 to 2.17 times higher. This confidence interval
depends only on the difference in the values of BMI, so it applies to any two values of BMI that
differ by 3.

GUIDED PRACTICE 9.16

Calculate a 99% confidence interval for the odds ratio of hyperuricemia comparing two individuals
with BMI 29 and 31. 7

The above examples illustrate confidence intervals for the slope parameter. Confidence
intervals for (predicted) odds and probabilities are more difficult and not discussed in this text.
Since odds are estimated using exp(b0 + b1bmi), the standard error for the estimate uses the
sampling distribution of each of the estimated coefficients and the their correlation, something
that is not covered in this chapter. The same is true for estimates of probabilities.

9.3.1 The connection between logistic regression and the χ2 test

Tuberculosis (TB) is a communicable disease that is among the top 10 causes of death
worldwide; it is the leading cause of death from a single infectious agent.8 Despite the virulent
nature of the disease, it is often treatable. If the disease is diagnosed early and treated with

7The estimate and standard error for 2(β1) are, respectively, (2)(0.185) = 0.370 and (2)(0.037) = 0.074. For a 99%
interval z? = 2.58 so the interval is calculated as

0.370± (2.58)(0.074) −→ (0.179,0.561) −→ (1.196,1.752).

8World Health Organization et al. “Global tuberculosis report 2019. 2020”. In: Geneva: World Health Organization
(2020).



9.3. INFERENCE FOR SIMPLE LOGISTIC REGRESSION 473

effective antibiotics for six months, it can be cured, preventing further infections in others.
Unfortunately, many patients are not able to complete the six to eight month course of TB therapy,
leading to further spread of the disease. Treatment interruptions and premature endings are
particular problems in low and middle income countries.

The World Health Organization (WHO) and other health care organizations have used the
term treatment default in TB to denote a treatment interruption of at least two months, and nearly
all published papers use that term. This chapter uses the more descriptive term two-month
interruption for the premature ending of treatment. When the context is clear, this is shortened to
interruption.

A 2015 cross-sectional study by Lackey, et. al.9 examined patient characteristics associated
with interrupted treatment in a section of Lima, Peru where the incidence of TB was 213 cases per
100,000 persons at the time the study was conducted. For comparison, the incidence of TB in the
United States is approximately 2.5 cases per 100,000.10 The study enrolled 1,294 participants and
reported results based on data from 1,233 participants for whom there were no missing data on
outcome and patient characteristics. Figure 1 in the Lackey article describes the criteria for
exclusions that led to the data from 1,233 participants used in their analysis. Complete case
analysis is the term used to refer to an analysis using only the cases without any missing
observations; while this is often not the best way to adjust for missing data, alternative methods
are beyond the scope of this text. The dataset tb.interruption in the oibiostat package contains
data on 1,293 of the 1,294 all the participants enrolled; data from one participant whose
treatment was stopped prematurely by the clinical team was dropped before the dataset was
posted by the study team.

9Brian Lackey et al. “Patient characteristics associated with tuberculosis treatment default: a cohort study in a high-
incidence area of Lima, Peru”. In: PLoS One 10.6 (2015), e0128541.

10https://www.cdc.gov/tb/statistics/default.htm.
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EXAMPLE 9.17

Figure 9.9 shows a logistic regression model estimating the association of a two-month treatment
interruption among participants who had completed a secondary school education. (Decimals from
the output have been rounded to 3 significant figures for readability.) Interruption (the variable
two.mo.interruption in the dataset) is a binary variable coded 0 for individuals who completed
therapy and 1 for those who did not. The predictor education is a factor variable, with levels
"Yes" and "No" for participants with and without secondary school education, respectively. Among
the 1,233 cases in the dataset, 127 (10.3%) experienced a treatment interruption and 719 had at
least a secondary school education. Compute the odds ratio for ending TB therapy prematurely,
comparing participants with a secondary school education to those without, along with a 95%
confidence interval for the odds ratio.

The assumptions for the logistic model are reasonable in this example. The participants were sam-
pled independently, the predictor is binary, and there are more than 10 cases with either outcome.
The coefficient of educationYes indicates that participants with secondary school education have
a log(odds) that is reduced additively by 0.785 compared to those without secondary school edu-
cation. The odds ratio comparing someone with secondary school education to someone without
is e−0.785 = 0.456. The odds of a premature treatment interruption among participants with a sec-
ondary school education are 0.456 times the odds of those without a secondary education. The
odds are reduced by more than 50%.

Because the z statistic has value -4.12, the evidence for an association is strong (p < 0.001). A
95% confidence interval for the odds ratio can be calculated by first calculating the corresponding
interval for the log(OR) and exponentiating. The 95% confidence interval for the log(OR) is

−0.785± (1.96)(0.191) −→ (−1.159,−0.411).

The confidence interval for the odds ratio is

(e−1.158, e−0.411) = (0.314,0.663).

Individuals with secondary school education have a lower relative odds of treatment interruption
than those without; with 95% confidence, the odds of interruption may be from 0.314 to 0.663
times lower in individuals with a secondary education. This is sometimes phrased as an odds that
is 34% to 69% ((100− 66.3)% to (100− 31.4%)) lower.

Confidence intervals for odds ratios can also be calculated using the methods in Section 8.6.4,
although answers may differ slightly because of the different formulas.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.767 0.125 -14.14 0.000

educationYes -0.785 0.191 -4.12 0.000

Figure 9.9: Estimated logistic regression, the association of two-month treatment
interruption with secondary school education.

The association between treatment interruption and secondary school education in the
logistic regression model is evident in a 2× 2 table (Figure 9.10). Among 514 participants without
a secondary school education, 75/514 = 14.6% experienced a treatment interruption, while
52/719 = 7.2% participants with a secondary education had an interruption.
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No Sec. Edu. Sec. Edu. Sum
No interruption 439 667 1106

Interruption 75 52 127
Sum 514 719 1233

Figure 9.10: Two-month treatment interruption by secondary school education.

GUIDED PRACTICE 9.18

Using Figure 9.10, compute the odds ratio for treatment interruption comparing participants with-
out and with a secondary school education and show that it is the same as the odds ratio calculated
in the logistic regression, 0.456. 11

The χ2 value for the table (16.8 with one degree of freedom) is highly statistically significant
(p < 0.001) as is the z statistic in the logistic regression in Figure 9.10. In the setting of a 2× 2
table, logistic regression produces the same summary statistic for an association as a direct
analysis of the table; this is analogous to how linear regression with a binary predictor provides
the same results as a two-sample t-test.

Associations in observational studies should never be interpreted as causal effects and this
example underscores that principle. Increasing access to secondary education in hopes of
increasing successful completion of TB treatment may not change outcome; members of the
population likely have many characteristics that enabled them to have access to both a secondary
education and adequate health care.

11For participants without a secondary school education, the odds of treatment interruption are 75/439 = 0.171. For
patients with at least a secondary school education, the corresponding odds are 52/667 = 0.078. The relative odds, or odds
ratio, comparing those with a secondary school education to those without is 0.078/0.171 = 0.456.
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9.4 Multiple logistic regression

9.4.1 Models with two predictors

The next sections introduce multiple logistic regression using examples with two predictors
and categorical predictors with more than two levels. The more abstract discussion of the general
logistic regression model and methods for inference for its parameters are deferred to
Section 9.4.4.

Women are generally less likely to experience hyperuricemia than men for reasons that are
not completely understood, but may be due to increased levels of estrogen.12 Figure 9.11 shows
that is the case in these data, where the estimated OR for hyperuricemia, comparing females to
males is (34/213)/(61/192) = 0.5025. In these data, the odds of hyperuricemia in females is half
what it is in males. Does the relationship between hyperuricemia and BMI in Figure 9.8 change
when sex is added to the model?

No Yes Sum
male 192 61 253

female 213 34 247
Sum 405 95 500

Figure 9.11: Table showing the association between hyperuricemia (No, Yes) and
sex in the random sample of 500 participants from the hyperuricemia data

Let E denote hyperuricemia, and

pE(bmi, sex) = P (E|bmi, sex).

The two-variable model used to answer this question is

log
[
pE(bmi, sex)

1− pE(bmi, sex)

]
= β0 + β1bmi + β2sex. (9.19)

The sample size guidelines for logistic regression outlined in Section 9.4.4 specify that the
number of predictors in a model (including the intercept) should be no larger than 10% of the
smaller of the number of successes or failures. There are 95 cases in the dataset with
hyperuricemia (the smaller number of the two outcomes), so a model with 2 predictors meets the
sample size guideline. The estimated model is shown in Figure 9.12. The factor sex is coded
"male" (the baseline category) or "female", and the units of BMI are kg/m2. The estimated
regression indicates that BMI remains strongly associated with hyperuricemia after adjusting for
sex.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.503 0.982 -5.61 0.000

bmi 0.171 0.038 4.56 0.000
sexfemale -0.480 0.245 -1.96 0.050

Figure 9.12: Logistic regression with response variable hyperuricemia predictors
BMI and sex.

12Victoria L Halperin Kuhns and Owen M Woodward. “Sex differences in urate handling”. In: International journal of
molecular sciences 21.12 (2020), p. 4269.
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The algebraic form of the estimated model is

log(�oddsE) = −5.503 + (0.171)bmi− (0.480)sexfemale. (9.20)

A great deal can be learned about the interpretation of logistic regression from even this
simple model. The coefficient of BMI can be used to calculate the estimated change in odds
associated with a change in BMI as long as the sex variable remains constant, i.e., for participants
of the same sex.

EXAMPLE 9.21

Calculate the OR for two individuals of the same sex but with BMI values of 28 and 29.

The estimated model coefficients can be used to calculate the difference in log(odds) for one unit
change in BMI using the same steps that led to Equation 9.11. When the variable sex does not
change, the difference in log odds for two values of bmi given by x1 and x2 is

[b0 + b1(x2) + b2(sex)]− [b0 + b1(x1) + b2(sex)] (9.22)

= b1(x2 − x1). (9.23)

For a one unit change in BMI the difference in log odds is the b1 = 0.171, and the odds ratio is

OR = e0.171 = 1.186,

a roughly 20% increase in the odds of hyperuricemia associated with the larger BMI.

Confidence intervals are calculated using standard errors just as in single variable logistic
regression.

GUIDED PRACTICE 9.24

Calculate a 95% confidence interval for the odds ratio of hyperuricemia associated with a three
unit increase in BMI for two individuals of the same sex. 13

GUIDED PRACTICE 9.25

Does the intercept have scientific meaning in this model? 14

Since the hyperuricemia study had a cross-sectional design, the probability of hyperuricemia
for values of the predictors can be estimated from the model, as discussed later in Section 9.4.4.

13A 95% confidence interval for the change in log(odds) for a 1 unit change in BMI is 0.171±(1.96)(0.038) = (0.097,0.246).
The confidence interval for a three unit change can be calculated by multiplying the lower and upper bounds by 3:
[(3)(0.097), (3)(0.246)] = (0.291,0.738). The corresponding interval for the OR is (e0.290, e0.736) = (1.338,2.092).

14No. The intercept is the log(odds) for an individual with baseline category "male" but BMI = 0.
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EXAMPLE 9.26

Calculate the estimated probability of hyperuricemia for a female with BMI 28.

The log(odds) are
−5.503 + (0.171)(28)− 0.480 = −1.195,

so the odds are e−1.195 = 0.303. The estimated probability of hyperuricemia is

exp
[ 0.303

1 + 0.303

]
= 0.232.

A female with BMI 28 has an estimated chance of 23% of being hyperuricemic.

The OR for hyperuricemia comparing males to females is the same, for any value of BMI as
long as BMI is held constant. When both predictors change, the full model must be used to
calculate odds ratios.

EXAMPLE 9.27

What is the OR for hyperuricemia, comparing a woman with BMI 32 to a male with BMI 30?

The log(odds) of hyperuricemia for a woman with BMI 32 is

−5.503 + (0.171)(32)− 0.480 = −0.511,

so the corresponding odds are e−0.511 = 0.600.

For the male with BMI 30, the log(odds) are

−5.503 + (0.171)(30) = −0.373,

so the odds of hyperuricemia are 0.689. The OR comparing the female to the male is 0.600/0.689 =
0.871.

A woman whose BMI is 2kg/m2 larger than a male still has a lower estimated odds of hyper-
uricemia.

In the model for hyperuricemia the change in log odds when when one predictor changes
does not depend on the value of the other predictor. The same is not true for estimated
probabilities.
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EXAMPLE 9.28

For males, use the estimated probabilities of hyperuricemia for individuals with BMI 28 and
BMI 30 to calculate estimated prevalence differences and risk ratios. Repeat the calculation for
females.

For a male with BMI 28 the estimated log odds and odds of hyperuricemia are −5.503+(0.171)(28) =
−0.715 and e−0.715 = 0.489. The estimated prevalence (probability) of hyperuricemia is 0.489/(1 +
0.489) = 0.328. The estimated odds of hyperuricemia for a male with BMI 30 were calculated
in Example 9.27 and are 0.689, so the estimated prevalence is 0.408. The estimated prevalence
difference and ratio risk are, respectively, 0.408− 0.328 = 0.080 and 0.408/0.328 = 1.244.

The prevalence difference and risk ratio for females are calculated similarly and are, respectively,
0.066 and 1.290. The prevalence differences and ratios associated with a change in BMI from 28 to
30 are different for males than for females, and must be calculated using all the coefficients in the
model. This result is another reason why an estimated OR from a logistic regression should not be
interpreted as a risk ratio.

In a model that includes sex, the log(OR) for hyperuricemia for a one unit change in BMI for
participants of the same sex is 0.171, slightly attenuated toward 0 from the earlier log(OR) of
0.185 in the model with only BMI. In these data, males tend to have larger BMI (25 vs 23.6kg/m2)
and have double the odds hyperuricemia than females, so the estimated association in the model
with BMI alone is influenced by the males with larger BMI. Adding sex to the model separates the
sex and BMI associations, at least within the assumptions of the logistic model.

9.4.2 Modeling a possible interaction

A regression model is called an additive model in the predictors when the change in
association between a response and predictor does not depend on values of the other predictors.
The logistic model in Equation 9.20 is additive in the predictors BMI and sex for the log odds of
hyperuricemia; the difference in log(odds) for two values of BMI does not depend on sex. What is
the evidence that the association between BMI and hyperuricemia might differ for males and
females?

When an association may differ between categories of another predictor, such as sex, it is
common in the epidemiological literature to call that predictor a potential effect modifier, and
the phenomenon is called effect modification. This section does not use that terminology for
reasons explained later and instead uses the more statistically descriptive term interaction.

In regression models interactions are usually explored by including an interaction term.
Section 7.7 discusses modeling an interaction in linear regression. In these data, a two variable
model with an interaction term in the logistic model is

log(oddsE) = β0 + β1bmi + β2sex + β3(bmi× sex). (9.29)

The last term is the product of bmi and sex.
The interaction term (bmi×sex) allows the slope coefficient for bmi to depend on sex. For the

reference sex category "male" the coefficient of bmi is β1; for the category "female" the slope of bmi
is β1 + β3. Confidence intervals for β3 or a test of the null hypothesis β3 = 0 can be used to assess
the evidence against the hypothesis that the log(odds) for the relationship between hyperuricemia
and BMI does not depend on sex.

The number of hyperuricemic events (95) is sufficient to add another parameter, and
Figure 9.13 shows the estimated model. Equation 9.30 shows the algebraic form of the this model.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.006 1.264 -3.96 0.000

bmi 0.152 0.049 3.12 0.002
sexfemale -1.652 1.947 -0.85 0.396

bmi:sexfemale 0.046 0.077 0.61 0.544

Figure 9.13: Logistic regression with interaction: response variable hyper-
uricemia, predictors BMI and sex.

l̂og[oddsE(bmi, sex)] = b0 + b1bmi + b2sexfemale + b3(bmi)(sexfemale)

= −5.006 + (0.152)bmi− (1.652)sexfemale + (0.046)(bmi)(sexfemale). (9.30)

The evidence for the interaction term is weak (p = 0.544). The observed difference in
association between the log odds of hyperuricemia and BMI between males and females is not
inconsistent with what would be expected if there were actually no population-level difference in
association. In this model, there is no support for the hypothesis that the relationship between
hyperuricemia and BMI differs by sex, and the interaction term should be left out of the
exploratory model. Exercise 9.25 explores the interpretation of a model with an interaction term.

A data analyst starting with the interaction model might mistakenly conclude that neither
sex nor the interaction of sex with bmi should be retained. Analyses should always begin without
interaction terms and add them only when there is a reason to look more closely at the
relationship between a response and a predictor across the levels of another variable.

This chapter avoids the use of the terms effect modifier and effect modification in
observational studies. The term "effect" implies a causal link that cannot be established in an
observational study with the methods described in this text. It is common, though, in applications
to label the non-interaction terms as main effects and interaction terms as interaction effects.
The terminology can be a useful abbreviation as long as no causal association is meant or inferred.

9.4.3 Categorical predictors with more than two levels

When spawning, a female horseshoe crab migrates to shore with a male attached to her spine
to lay clusters of eggs in the sand. Additional male crabs may join the pair and fertilize the eggs as
well, presumably increasing genetic diversity of the offspring. The additional male crabs are
called satellites. The data used here originally appeared in Brockman15 and can be found at the
website for Categorical Data Analysis, 3rd ed.16 and in the R package glmbb. The dataset contains
information on 173 female crabs, 111 with at least one male satellite.

This section examines the association between the odds of the event E that a female has one
or more satellites and her carapace (shell) width and color. Let the variable y denote whether a
female has one or more satellites (y = 1) or none (y = 0), width gives the carapace width in
centimeters and the levels of the factor variable color are "Light", "MedLight" (for medium light),
"MedDark" (for medium dark), and "Dark", denoting increasingly dark colors. The predictor
color is an ordinal categorical variable, but since methods that take advantage of ordinal
variables in contingency tables and logistic regression are beyond the scope of this text, the
analyses in this section treat color as a standard unordered categorical variable.

The contingency table in Figure 9.14 shows the association between color and the presence of
at least one satellite. The estimated odds vary by color; the odds of dark females having at least

15H Jane Brockmann. “Satellite male groups in horseshoe crabs, Limulus polyphemus”. In: Ethology 102.1 (1996), 1–21.
16Alan Agresti. Categorical data analysis, 3rd ed. Vol. 792. John Wiley & Sons, 2013.
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one satellite are 7/15 = 0.467, while the odds for a female with medium light color are
69/26 = 2.654. The OR, comparing medium light to dark, is 2.654/0.467 = 5.683; the odds of
medium light female crab having at least one satellite are between 5 and 6 times larger than for a
dark female.

The conditions given in Section 8.3.2 for the validity of a χ2 test are met in the table (just
barely, see Exercise 9.21); the χ2 statistic has value 14.08 on 3 degrees of freedom, p = 0.003. The
extension of Fisher’s exact test to a 4× 2 table yields the same p-value, so the table provides
evidence that in these data, color and having more than one satellite are not independent.

Color y = 0 y = 1 Sum
Dark 15 7 22
MedDark 18 26 44
MedLight 26 69 95
Light 3 9 12
Sum 62 111 173

Figure 9.14: Absence (y = 0) or presence (y = 1) of at least one satellite versus
color of a female horseshoe crab.

The interpretation of logistic regression with a categorical predictor with four levels is the
same as that for a predictor with 2 levels described in Section 9.3.1 – odds ratios calculated from
the 4× 2 table will match those computed from the regression coefficients. Figure 9.15 shows the
estimated regression with the predictor color, with the color "Dark" set as the reference category.
The less frequent response category y = 0 has 62 observations and the model has 4 parameters
including the intercept, 2 fewer than the maximum 6 the guidelines suggest, so estimates and
inference should be reliable.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.762 0.458 -1.67 0.096

colorMedDark 1.130 0.551 2.05 0.040
colorMedLight 1.738 0.512 3.39 0.001

colorLight 1.861 0.809 2.30 0.021

Figure 9.15: Logistic regression with horseshoe crab data, response variable pres-
ence of male satellites, predictor variable color.

The algebraic form of the model is

log[oddsE(color)] = −0.762 + (1.130)colorMedDark+ (1.738)colorMedLight+ (1.861)colorLight.
(9.31)

Since the reference category is "Dark", the log(odds) of a dark female having at least one
satellite is the intercept term −0.762, with corresponding odds e−0.762 = 0.467, the same value
when using the table in Figure 9.14. This is one instance where the intercept term is meaningful.
More generally, when there are no other predictors in a model with a categorical predictor, the
intercept term is the log(odds) of the outcome for the reference category. Using Equation 9.31, the
log(odds) for the color "MedLight" is −0.762 + 1.738 = 0.976, with corresponding odds
e0.976 = 2.654. The OR comparing "MedLight" to "Dark" 2.654/0.467 = 5.683, also agreeing with
the OR calculated from Figure 9.14. When comparing a category against the reference, ORs can be
calculated directly. The coefficient for "MedLight" is the difference in log(odds) between
"MedLight" and the reference category "Dark", so the OR comparing the two categories is
e1.738 = 5.686. The small difference between this OR and the one calculated from Figure 9.14 is
due to the rounding of the coefficients from the logistic model.

The pattern of the coefficients is consistent with what is known about horseshoe crabs – the
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log(odds) and hence odds and probability of having satellites increase with lighter colors of the
female carapace.

Calculating ORs for two categories that do not include "Dark" can be done with the model
coefficients. The log(odds) for the category "Light" is −0.762 + 1.861 = 1.099. The difference in
log(odds), comparing "Light" to "MedLight" is 1.099− 0.976 = 0.123, so the OR is e0.123 = 1.131.
This odds ratio can also be calculated directly from model coefficients. Suppose b0 is the intercept,
and let b3 and b4 denote the coefficients of the categories "MedLight" and "Light", respectively.
The difference in log(odds) for the two categories is

(b0 + b4)− (b0 + b3) = b4 − b3

= 1.861− 1.738

= 0.123.

Since the coefficient for the intercept cancels in the subtraction, the odds ratio comparing
"MedLight" to "Light" is exp(b4 − b3) = exp(0.123) = 0.131. This argument easily generalizes to any
two categories when predictors have more than 4 levels.

The calculation of a confidence interval for the OR comparing two categories that are not the
reference category is a more difficult calculation, since it requires the standard error of the
difference of two estimated log(OR)s, a topic not covered here.

Since the χ2 test based on Figure 9.14 and the deviance based test for the model are both used
to test the null hypothesis of no relationship between the response and the predictor, both should
yield approximately the same statistic and p-value. The null and residual deviances for the model
are 225.76 and 212.06. The difference 13.7 yields p = 0.003 for a χ2 with 3 degrees of freedom.
Both approaches support the conclusion that, when other factors are not accounted for, color is
associated with the tendency for a female crab to have at least one satellite. (The two χ2 values are
slightly different because they are calculated using different formulas.)

The p-values of the coefficients are used to test the null hypothesis that the difference in
log(odds) between a category and the reference "Dark" is 0, i.e. that the two log(odds) are equal.
They cannot be used to test the importance of a particular color, and since the colors are levels of
the single predictor color, one level cannot be retained and the others dropped. In these data, the
p-values for the coefficients may that all colors are associated with an increase in the odds of
satellites compared to "Dark", but no adjustment has been made for multiple testing. Using a
Bonferroni correction as in ANOVA (Section 5.5.3) and multiplying all p-values by 3 suggests that
only "MedLight" crabs have significantly larger odds of satellites compared to "Dark".

9.4.4 Inference for multiple logistic regression

This section discusses the principles used for inference in multiple logistic regression,putting
some of the model features discussed earlier in a general context. In the multiple regression
model, E is an event (e.g., a TB treatment interruption, or presence of hyperuricemia) that may be
associated with p predictors X1, . . . ,Xp. Let x = (x1, . . . ,xp) and pE(x) the conditional probability

pE(x) = pE(x1,x2, · · · ,xp) = P (E|x1,x2, · · · ,xp).

In the multiple logistic regression model,

log
[
pE(x)

1− pE(x)

]
= β0 + β1x1 + β2x2 + · · ·+ βpxp,
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or, equivalently,
log[oddsE(x)] = β0 + β1x1 + β2x2 + · · ·+ βpxp.

The model is sometimes written in terms of the log odds of a binary response variable Y that takes
on the value 1 if the event E occurs and 0 otherwise:

log
[
P (Y = 1|x)
P (Y = 0|x)

]
= β0 + β1x1 + β2x2 + · · ·+ βpxp.

In statistical terms, Y is the indicator variable for the event E.
The coefficient of a predictor is the change in the conditional log(odds) of E associated with a

one unit change of that predictor, if the values of the other variables in the model do not change.
The argument showing that the change in log(odds) for a variable depends on only its coefficient
and not on the intercept or the values of the other variables is similar to that used in deriving
Equations 9.11 and 9.23. Suppose for simplicity that the logistic regression is the two variable
model

log[oddsE(x)] = β0 + β1x1 + β2x2.

If x1 changes from xa1 to xb1 the change in log odds will be

(β0 + β1x
a
1 + β2x2)− (β0 + β1x

b
1 + β2x2) = β1(xa1 − x

b
1),

as long as x2 remains constant. The resulting OR, exp[β1(xa1 −x
b
1)], does not depend on the value of

either β0 or x2. When x1 changes by one unit (xa1 − x
b
1 = 1), the coefficient β1 is the additive change

in log(odds) and eβ1 is multiplicative change in the odds for a one unit change in x1. Equivalently,
β1 and eβ1 are, respectively, the log(OR) and (OR) for a one unit change in x1. This same
derivation applies to any variable in models with more than two variables.

The conditional odds of E are

pE(x)
1− pE(x)

= exp(β0 + β1x1 + β2x2 + · · ·+ βpxp), (9.32)

and using the relationship between odds and probabilities,

pE(x) =
exp(β0 + β1x1 + · · ·+ βpxp)

1 + exp(β0 + β1x1 + · · ·+ βpxp)
. (9.33)

The assumptions for inference with multiple logistic regression are similar to those for simple
logistic regression: (1), the transformation β0 + β1x1 + · · ·+ βpxp is a reasonable model for the log
odds of E; (2), the set of response and predictor variables for each case are independent of those in
the other cases; (3), log(odds), odds and probabilities can all be estimated when the data are a
random sample in an exposure-based or cross-sectional design; and (4), log(odds) and odds can be
estimated in case-control studies but probabilities cannot.

The first assumption is usually the most difficult to justify without some of the diagnostic
tools discussed in Section 9.5. The other three all depend on the study design, just as in simple
logistic regression.

Hypothesis tests and confidence intervals are based on the approximate normal sampling
distributions of the estimates for the coefficients.
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SAMPLING DISTRIBUTIONS OF ESTIMATED COEFFICIENTS IN MULTIPLE LOGISTIC REGRES-
SION

Let E be an event and suppose

�log(oddsE(x)) = b0 + b1x+ · · ·+ bpxp

is an estimated logistic regression model from a dataset with n cases. For a coefficient bk with
standard error s.e.(bk), the statistic

bk − βk
s.e.(bk)

has approximately a standard normal (z) distribution in moderate to large sample sizes.
Consequently, under the hypothesis H0 : βk = 0, the statistic

bk
s.e.(bk)

has an approximate standard normal (z) distribution.

There is no clear dividing line between a sample size that is adequate and one that is not, and
there have been many suggested guidelines. The guideline used here is based on the smaller
number of outcomes in the two values of the response variable. If N is the number of observations
in this category, the number of parameters (including the intercept) should be no larger than
N/10.17 Using this rule, for instance, in a dataset with 40 successes and 50 failures, a logistic
regression should have no more than (40/10) = 4 parameters, including the intercept.

The sampling distribution can be used for tests and confidence intervals.

TESTING A HYPOTHESIS ABOUT A LOGISTIC REGRESSION COEFFICIENT

A test of the two-sided hypothesis

H0 : βk = 0 vs. HA : βk , 0

is rejected with significance level α when

|bk |
s.e.(bk)

> z? ,

where z? is the point on a z-distribution with area (1−α/2) in the left tail.

For one-sided tests, z? is the point on a z-distribution with area (1−α) in the left tail. A
one-sided test of H0 against HA : β1 > 0 rejects when the standardized coefficient is greater than z? ;
a one-sided test of H0 against HA : β1 < 0 rejects when the standardized coefficient is less than −z? .

CONFIDENCE INTERVALS FOR A LOGISTIC REGRESSION COEFFICIENT

A two-sided 100(1−α)% confidence interval for the model coefficient βk is

bk ± [s.e.(bk)× z?].

All statistical software packages provide standard errors (s.e.) of coefficients, and most

17Peter Peduzzi et al. “A simulation study of the number of events per variable in logistic regression analysis”. In: Journal
of clinical epidemiology 49.12 (1996), pp. 1373–1379.
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provide the z statistic and its p-value directly.
The selection of variables to include in a regression model depends on many factors,

including the intent of the analysis and the statistical precision of estimated coefficients. The
selection rarely depends only on a significance test, but assessing the strength of evidence of the
association between a variable or set of variables and a response is a good place to start the
process, and the deviance statistic is a useful statistic. An analysis often begins by assessing
whether a model is useful at all. A logistic regression model may not useful for estimating odds
ratios or probabilities if a model with predictors is not significantly better than a model with only
the intercept term, that is, if there is not strong evidence against the hypothesis that coefficients of
the predictors are all 0. A test of the null hypothesis that all model coefficients are 0 uses a statistic
called the deviance. Multiple logistic regression models are estimated by the method of maximum
likelihood, the same approach that is used for simple logistic regression, and the deviance is a
function of the maximized likelihood function. Its mathematical definition is beyond the scope of
this book; it is enough to know that the deviance decreases as the fit of a model improves.

THE DEVIANCE STATISTIC FOR OVERALL MODEL FIT

In logistic regression, the residual deviance is a measure of the fit of an estimated model
and null deviance is a measure of fit of a model with only an intercept term. A test of the
hypothesis H0 : β1 = β2 = · · · = βp = 0 versus the alternative that at least one coefficient is not
zero can be based on the statistic

D = null deviance− residual deviance.

If the conditions for logistic regression are met, D has approximately a χ2 distribution with p
degrees of freedom under H0. A level α test of H0 is rejected if D is in the right tail with area
α of a χ2 distribution with p degrees of freedom.

The statistic D will be small when the residual deviance for the current model is close to the
deviance of a model without any predictors; the current model is unlikely to be useful. Large
values of D mean that the residual deviance for the current model is much smaller than the
deviance for a model with no predictors and, consequently, provides a useful summary of the
data. The statistic D uses a different metric than the overall F-statistic in least squares regression,
but it serves the same purpose.

In the model for hyperuricemia with predictors sex and bmi, both coefficients have small
p-values, so it is reasonable to expect that model including the two variables is better than a
model with only an intercept, and the deviance statistic confirms that. The software R reports that
the null and residual deviances are 486.22 and 455.27, respectively. The difference, 30.95, yields
p < 0.001 from a χ2 with 2 degrees of freedom.

The deviance statistic can also be used to compare two nested models, i.e., models where the
parameters in one are a subset of those in the second. Nested models most commonly occur when
examining the evidence for keeping a set of variables as part of a larger model.
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THE DEVIANCE STATISTIC FOR COMPARING TWO NESTED MODELS

Let

log[oddsE(x)] = β0 + β1x1 + β2x2 + · · ·+ βpxp (9.34)

be the usual multiple logistic regression model for the association between an event E and
potential predictors x1,x2, . . . ,xp, and let Dp be the residual deviance for the model.
Suppose the nested model

log[oddsE(x)] = β0 + β1x1 + β2x2 + · · ·+ βkxk (9.35)

is based on only the first k of the p predictors, where k < p, and let Dk be the residual deviance
for the smaller, nested model. The hypothesis that the p−k predictors xk+1,xk+2, . . . ,xp may not
be needed in the model is equivalent to the null hypothesis H0 : βk+1 = βk+2 = · · · = βp = 0.

If the conditions for logistic regression are met, then under H0, Dk −Dp has a χ2 distribution
with p−k degrees of freedom. The hypothesis H0 is rejected at level α if Dk −Dp is in the right
tail with area α of a χ2 distribution with p − k degrees of freedom.

The coefficients in H0 can, of course, can be any subset of the p variables in the full model
and need not be adjacent in the variable listing.

The residual deviance always decreases when variables are added to a model, just as R2

always increases in linear regression. Adding variables simply because the deviance is decreasing
can lead to overfitting. Section 7.3.2 describes an adjusted R2 that ‘penalizes’ R2 by a factor that
depends on the number of parameters. The Akaike Information Criterion, or AIC, plays a similar
role as the deviance.

THE AKAIKE INFORMATION CRITERION (AIC) FOR COMPARING TWO NESTED MODELS

The Akaike Information Criterion (AIC) for a model with p predictors is given by

AICp =Dp + 2(p+ 1).

Let Dp and Dk be the residual deviances for the larger and smaller (nested) models, respec-
tively, and let AICp and AICk be the respective values of AIC.
The deviance Dp will necessarily be smaller than Dk , but the larger model may not be worth
the added complexity if AICp ≥ AICk .

In the two variable model for hyperuricemia, the evidence for the value of sex as a predictor
is weaker than for bmi but still relatively strong, with a p-value of 0.05. Should it be kept in the
simple model for hyperuricemia using bmi alone? The deviance statistics for the two models are
Dbmi = 459.54 and Dbmi,sex = 455.26. As expected, Dbmi,sex < Dbmi. The AIC for the two variable
model is

AICbmi, sex = 455.26 + 2(3) (9.36)

= 461.26, (9.37)
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while the AIC for the one variable model

AICbmi = 459.54 + 2(2) (9.38)

= 463.26. (9.39)

The AIC for the larger model is still smaller than that for the smaller model even after accounting
for the number of parameters, so it seems reasonable to leave sex in an explanatory model for
hyperuricemia. AIC is also an indirect measure of how well a model predicts future observations
and is discussed in that context in subsection on estimating discrimination.

Selecting a model often involves a balance between the goal of an analysis and the use of AIC
or other in automated model selection methods. An extended discussion of model selection is
beyond the scope of this text. The analyses later in this chapter use AIC informally along with the
context of the analysis to examine the value of nested models.
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9.5 Assessing model adequacy

Exploring model diagnostics is an important part of any analysis and should not be
overlooked. This section discusses diagnostics commonly used with logistic regression, using the
TB and hyperuricemia data as examples.

The first step in model checking should assess how well the model matches the data.
Section 9.5.1 discusses two goodness-of-fit statistics, a traditional χ2 statistic when all predictors
are categorical, and the more general Hosmer-Lemeshow statistic that allows continuous
predictors. These two statistics may be sufficient when the goal of an analysis is an explanatory
model to estimate associations between a response and predictors.

Logistic regression is often used to predict binary outcomes (might this person be
hyperuricemic?) or to build a classification model that groups members of a population into
categories (which patients admitted to a hospital emergency room should be given high priority
for care?). After checking model fit, it is important to use some of the methods in Section 9.5.2 to
check the accuracy of predictions. The Brier score is a summary statistic used to estimate how
well predicted probabilities match observed outcomes. Calibration plots provide more detail
than Brier scores; they provide a graphical diagnostic for the match between predicted
probabilities and outcomes. When a logistic model will be used to classify individuals into two
subgroups of a population (typically, those with or without an undiagnosed condition) false
negative rates and false positive rates estimate the probabilities of incorrectly classifying an
individual with (false negative) or without (false positive) the condition. Receiving operator
characteristic curves (ROC curves) show graphically how classification errors depend on the
prediction rule.

When statistics and graphics for checking the accuracy of predictions are calculated using the
data on which the model for the model fit, estimated errors are called apparent error rates and
may not accurately reflect errors when the model is used in new data. Section 9.5.3 explores the
use for estimating . The use of a (also called a validation dataset ) is explored in the case study in
Section 9.6.

9.5.1 Goodness-of-Fit Statistics

Goodness-of-fit statistics typically assess how well estimates from a model match the
observed data, similar to the use of a χ2 test for the fit of a distribution discussed in Section 8.4.
The deviance statistic used in Section 9.4.1 is sometimes called a goodness-of-fit statistic, but it
assesses whether a model is better than no model at all (i.e., "better than nothing"). A significant
deviance statistic can be useful in deciding whether to examine a model more closely, but it does
not imply that the model adequately reflects the data. The use of the deviance to compare nested
models, as in Section 9.4.3, should also not be viewed as a goodness-of-fit statistic. It provides
guidance on whether a smaller model is adequate compared to a larger model, but does not test
the fit of either.

This section uses the TB dataset to illustrate goodness-of-fit when all predictors are
categorical and the hyperuricemia data to illustrate the other methods.

The χ2 goodness-of-fit statistic with categorical predictors

The simplest setting for assessing fit is one in which all predictors are categorical. Each
combination of predictor values yields a unique profile or pattern into which cases can be
grouped, and the observed numbers of responses within a profile can be compared with the
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expected number calculated from the model. Pearson residuals are standardized differences
between observed and expected, and a χ2 test is based on the sum of squared residuals. The
approach is illustrated using the TB interruption dataset.

Treatment for multidrug-resistant tuberculosis (MDR-TB) lasts longer than standard therapy
and may lead to a higher frequency of treatment interruptions. The dataset tb contains the
predictor mdr.tb indicating whether a study participant was receiving the longer course of
treatment. Figure 9.16 shows an estimated logistic regression model with predictors education
and mdr.tb.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.839 0.129 -14.225 < 0.000

educationYes -0.793 0.191 -4.144 < 0.000
mdr.tbYes 0.861 0.300 2.869 0.004

Figure 9.16: Logistic regression, response variable two-month interruption, pre-
dictors education and mdr.tb.

The data suggest that education and treatment for MDR-TB may be important predictors of
interruption.

Each of the predictors has two values, so each participant falls into 1 of 4 profiles. The rows
of Figure 9.17 show summary statistics for the 4 profiles, defined by the values of education and
mdr.tb, using 1 to denote the level "Yes" and 0 for "No". The figure is an abbreviated version of a
table produced by the function dx in the R package LogisticDx.

Profile educationYes mdr.tbYes Observed Predicted n Predicted Pearson residual
responses probability responses r

1 1 0 44 0.067 671 45.020 -0.157
2 0 0 67 0.137 481 65.980 0.135
3 1 1 8 0.145 48 6.980 0.418
4 0 1 8 0.273 33 9.020 -0.398

Figure 9.17: Summary statistics for the 4 profiles in the TB dataset defined by
education and treatment for MDR-TB

The first column labels the 4 profiles, and columns 2− 3 show the values of the predictors.
The remaining columns contain the following data for each profile:

– Observed responses: The observed number of participants with treatment interruptions.

– Predicted Probability: The predicted probability of a treatment interruption from the model.
Since the participants in a profile all have the same values for the predictor, there is a single
predicted probability for a profile.

– n: The number of participants who match the profile.

– Predicted responses: The predicted number of participants with treatment interruptions from
the model, calculated below.

– Pearson residual: The Pearson residual r, a measure of the discrepancy between the observed
and predicted number of treatment interruptions. The definition of the Pearson residual is
given below.

The predicted probability of a treatment interruption can calculated directly from the model;
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the predicted probability p̂1 for profile 1 is

p̂1 =
exp(−1.89− 0.793[1] + 0.861[0])

1 + exp(−1.89− 0.793[1] + 0.861[0])

= 0.06709.

The value in the table (0.067) has been rounded from the more precise 0.06709. Using the more
precise value, the predicted number of responses for profile 1 is

(n1)(p̂1) = (671)(0.06709)

= 45.02.

The Pearson residual r is a standardized version of the observed - predicted number of
responses, using the formula for the standard error of a binomial variable. For profile 1,

r1 =
44− 45.02√
n1[p̂1][1− p̂1]

=
−1.02√

671[0.06709][0.93290]

= −1.57.

The residual is small because the predicted value 45.02 is close to the observed number of
responses 44.

A χ2 goodness of fit is based on
∑
i r

2
i , with degrees of freedom equal to the number of

profiles minus the total number of parameters (including the intercept). For the TB data, the χ2

statistic χ2 is

χ2 =
4∑
i=1

r2
i

= (−0.157)2 + (0.135)2 + (0.418)2 + (−.398)2

= 0.376.

Since there are 4 profiles and 3 parameters in the model, the p-value is P (χ2
1df > 0.376) = 0.540.

The logistic model with predictors education and mdr.tb fits the data reasonably well – the
observed and expected numbers of responses are similar, and the goodness-of-fit test is
non-significant. However, even when a model seems to fit data, it is not necessarily the best
model. The TB dataset contains additional predictors not examined here that may provide a
better model for predicted probabilities.

The χ2 goodness-of-fit test discussed above cannot be used when some profiles have a small
number of observations or when one or more predictors are continuous. Profiles may have only
one case if a continuous predictor has different values for each case, causing the number of
profiles to be the number of cases. The validity of the test depends on the number of observations
within each profile being reasonably large, just as in the usual χ2 goodness-of-fit test. While it
might be tempting to create a smaller number of profiles by combining categories of some
categorical variables, creating profiles post hoc may also violate the assumptions for the test. In
fact, even when all predictors are categorical but there are a large number of profiles, some with
small numbers of observations, the χ2 test may not be reliable.
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The Hosmer-Lemeshow goodness-of-fit test

When the data cannot be grouped into profiles, Hosmer and Lemeshow have proposed a
goodness-of-fit statistic that uses groupings according to predicted probabilities. The test is
described in more detail in Hosmer, Lemeshow and Sturdivant18 and is outlined here, using the
logistic model for the association of hyperuricemia and BMI in Figure 9.5.

1. Let n be the number of cases in the dataset, xi be the set of predictor values for case i,
i = 1, . . . ,n, and E the event of interest (e.g., hyperuricemia). Calculate the model-based
predicted probabilities p̂i for each case and sort the probabilities in increasing order.

2. Group the observations into g groups. Hosmer and Lemeshow recommend g = 10 equally
sized groups with boundaries based on the deciles of the sorted predicted probabilities. The
rows of Figure 9.18 show the groups; the first group contains the 500/10 = 50 cases with
predicted probabilities between 0.0434 and 0.0913; the second group contains the 50 cases
with predicted probabilities larger than 0.0913 but no larger than 0.1144, etc. For instance,
the case with bmi = 17.68 has an estimated probability of hyperuricemia E given by

pE(17.68) =
oddsE(17.68)

1 + oddsE(17.68)

=
exp(−6.05 + 0.185(17.68))

1 + exp(−6.05 + 0.185(17.68))

= 0.058,

so this observation is part of group 1.

3. For each of the g groups, record the observed numbers of individuals without and with the
event (o0 and o1, respectively), and compute the expected counts for each category (ê0 and
ê1). The expected count ê0 =

∑
oi=0(1− p̂i), where the sum is over cases within a group, and

ê1 =
∑
oi=1 p̂i . The first row in Figure 9.18 shows that in the smallest 10% of the predicted

probabilities, 48 individuals did not experience hyperuricemia, while 2 did. The
corresponding expected counts were 46.2 and 3.8.

4. Calculate the test statistic Ĉ and its significance level:

Ĉ =
g∑
k=1

[
(o0k − ê0k)2

ê0k
+

(o1k − ê1k)2

ê1k

]
.

Hosmer and Lemeshow argued that the statistic has an approximate χ2 distribution with
g − 2 degrees of freedom. For the hyperuricemia data, Ĉ = 7.62 on 10− 2 = 8 degrees of
freedom, so p = 0.47 and a null hypothesis of an adequately fitting model is not rejected. A
non-significant goodness-of-fit statistic does not imply that a model fits very well, of course;
it only demonstrates that there is not substantial evidence of a poor fit to the data.

The Hosmer-Lemeshow statistic extends naturally to models with more than one predictor
since it depends on predictors only through predicted probabilities. In the hyperuricemia data
with predictors BMI and sex, the steps in calculating the entries for both a summary table and the
goodness-of-fit statistic are the same, except that the predicted probabilities are calculated using
BMI and sex.

Figure 9.19 shows a table summarizing the fit of the Hosmer-Lemeshow statistic for the
model using BMI and sex. Just as in Figure 9.18, the study sample has been grouped according to
deciles of the estimated probabilities. The observed counts for both the absence and presence of

18David W Hosmer Jr et al. Applied logistic regression, 3rd ed. John Wiley & Sons, 2013.
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Probability ranges o0 ê0 o1 ê1
1 [0.0434,0.0913] 48 46.2 2 3.8
2 (0.0913,0.114] 47 44.9 3 5.1
3 (0.114,0.133] 43 43.8 7 6.2
4 (0.133,0.152] 42 42.9 8 7.1
5 (0.152,0.174] 39 42.6 12 8.4
6 (0.174,0.193] 43 40.0 6 9.0
7 (0.193,0.221] 37 40.5 14 10.5
8 (0.221,0.245] 38 37.6 11 11.4
9 (0.245,0.299] 35 36.4 15 13.6

10 (0.299,0.722] 33 30.1 17 19.9

Figure 9.18: Hosmer-Lemeshow goodness-of-fit table for the logistic regression
with response hyperuricemia and predictor BMI.

hyperuricemia match the predicted counts reasonably well. The value of the Ĉ is 4.1 on 8 degrees
of freedom, p = 0.80. The statistic provides no evidence that the two variable model fits poorly.

Probability Ranges o0 ê0 o1 ê1
1 [0.0376,0.0843] 47 46.6 3 3.4
2 (0.0843,0.108] 46 45.2 4 4.8
3 (0.108,0.126] 45 44.2 5 5.8
4 (0.126,0.145] 43 43.2 7 6.8
5 (0.145,0.168] 41 42.2 9 7.8
6 (0.168,0.195] 39 40.9 11 9.1
7 (0.195,0.225] 43 39.5 7 10.5
8 (0.225,0.261] 35 38.0 15 12.0
9 (0.261,0.323] 34 35.5 16 14.5

10 (0.323,0.624] 32 29.8 18 20.2

Figure 9.19: Hosmer-Lemeshow goodness of fit table for the logistic regression
with response variable hyperuricemia and predictors BMI and sex.

The hyperuricemia example highlights an important aspect of testing model fit. The
Hosmer-Lemeshow tests suggest that neither the one nor two variable model fits poorly. The AIC
statistics for the models with and without sex in Equations 9.37 and 9.39 suggested that adding
the predictor sex to the model with BMI may be worth the small increase in model complexity,
especially because measuring and recording sex for each participant is relatively easy. Even
though the model with BMI alone does not fail a goodness-of-fit test it may not be the better
model.

The Hosmer-Lemeshow test has some weaknesses, and several alternatives have been
proposed, all with their own advantages and disadvantages. Grouping cases by deciles of
probabilities has no theoretical justification, a χ2 distribution with g − 2 degrees of freedom does
not always provide a good approximation to the sampling distribution, and the test has been
shown to have low power in some situations. These shortcomings of the test, however, are largely
about the statistical properties of the test statistic. It is important to keep in mind that statistical
tests for goodness-of-ft have limited value generally. A statistical test for goodness-of-fit will
reject the null hypothesis of adequate fit only when there is strong evidence of lack of fit. Many
models fit poorly but not so badly that a goodness-of-fit statistic is significant. The table
associated with the Hosmer-Lemeshow statistic is at least as valuable as its p-value, since it may
show regions of the data where the fit is either adequate or particularly poor. Users of the test
should pay more attention to the table than to the p-value.

Advanced texts explore a wider range of alternative goodness-of-fit statistics that are beyond
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the level of this text, such as those described in Section 5.2 of Hosmer, et. al19 and Section 10.5 of
Harrell.20

9.5.2 Estimating the accuracy of predictions

The Brier score

The Brier score B estimates prediction accuracy by comparing the predicted probabilities of the
outcome to observed values:

B =
1
n

n∑
i=1

(yi − p̂i)2,

where p̂i and yi are the predicted probabilities and observed response, and n is the sample size.
Like mean square prediction error in linear regression, the Brier score assesses fit by estimating
the squared distance between observed and predicted values.

An observation yi can take on only two values, 0 or 1, and p̂i will be a number in the interval
(0,1) since predicted probabilities are never exactly 0 or 1. When yi = 1 and p̂i is close to 1 or
when yi = 0 and p̂i is close to 0, p̂i is an accurate predictor for case i and the contribution to the
Brier score will be close to 0. When the reverse happens (p̂i is very different from yi) the
contribution to the Brier score will be close to 1. A Brier score close to 0 indicates that predictions
are generally accurate; if it is close to 1, predictions are generally poor. When evaluating
prediction accuracy, a low Brier score indicates a good prediction model.

There is no universal definition of a good Brier score, but a simple example helps. If all
predicted probabilities are 0.50 (essentially, coin flips), the contribution of each case to the Brier
score will always be 0.25, since yi − p̂i is always 0.5. So a Brier score of 0.25 is no better than
guessing an outcome with probability 0.5. In most cases, investigators want a Brier score smaller
than 0.20 or 0.15. In the hyperuricemia data, the Brier score for the model with predictor BMI
(Equation 9.9) is 0.1459, suggesting reasonably accurate predictions overall; the Brier score when
both BMI and sex are used is 0.1447, a small improvement that is consistent with the relatively
small decrease in the AIC when sex is added to the model. The two variable model seems to be
better, but not by much.

As will be seen in the methods for evaluating discrimination discussed later, a model may
make reasonably accurate predictions overall, but be a poor predictor in some subsets of cases.

There are analogues to R2 from linear models not covered here and can be found in more
advanced texts, such as Agresti21 and Hosmer, Lemeshow and Sturdivant.22

Calibration plots

Calibration plots are a visual display of the match between predicted probabilities and observed
outcomes. Figure 9.20 shows calibration plots for the logistic models for hyperuricemia with the
single predictor BMI (blue) and with predictors BMI and sex (green). Because the outcome is
binary, the agreement between predicted probabilities and outcomes is difficult to see in a
scatterplot of observed versus predicted values, so calibration plots typically add a best fitting
smooth curve, using loess or a similar function in R. The largest values on the horizontal axis for
the two curves are different to avoid extrapolation; the largest predicted probability is 0.722 for
the model with BMI alone and 0.624 for the model that adds sex. If a model is well-calibrated , the
smooth curve should lie close to the 45-degree line y = x (the dotted line in the curve). The figure

19David W Hosmer Jr et al. Applied logistic regression, 3rd ed. John Wiley & Sons, 2013.
20Frank E Harrell et al. Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and

survival analysis. Vol. 3. Springer, 2015.
21Alan Agresti. Categorical data analysis, 3rd ed. Vol. 792. John Wiley & Sons, 2013.
22David W Hosmer Jr et al. Applied logistic regression, 3rd ed. John Wiley & Sons, 2013.
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shows that both models are reasonably well-calibrated for predicted probabilities between 0.0 and
0.3, less so for probabilities larger than 0.4, where the data are sparse. The model including BMI
and sex is closer to the 45-degree line for predicted probabilities less than 0.60 than the model
with BMI alone. The behavior of the blue curve at the right edge of the plot is likely due to the
"edge effects" of loess when data are sparse for large or small values on the horizontal axis.
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Figure 9.20: Calibration plots, logistic model for the association between hype-
ruricemia and the predictor BMI (blue) and the predictors BMI and sex (green).
The light blue jittered dots at y = 0 and y = 1 denote observed values of hyper-
uricemia (0 = "No", 1 = "Yes") plotted against predicted probabilities. The smooth
curves are drawn using the R function loess on the scatterplots of actual pre-
dicted versus observed probabilities for the two models.

As noted earlier, Figure 9.22 can be viewed as a calibration plot. Instead of fitting a smooth
curve to the scatterplot of observed values and predicted probabilities, the agreement between
outcomes and predicted probabilities is shown by examining the match between predicted
probabilities and observed proportions of outcomes in buckets of the data.

Calibration plots are valuable, but their appearance depends on decisions made by the data
analyst. The choice of buckets when comparing proportions to predicted probabilities is arbitrary,
and the choice of parameters in the estimated loess curve can affect the appearance of the curve.

Estimating discrimination

Predicted probabilities from a logistic model can be used to group cases into two groups – those
predicted to have versus not have the outcome of interest. A naive but often used approach is to
predict that a case will have the outcome if the predicted probability is 0.50 or greater, and to
predict the outcome will not happen otherwise. The value 0.50 is called a threshold value for
predicting an outcome. Any value between 0 and 1 can be used as a threshold probability, and
0.50 may not always be the best one. A good model is reasonably successful at discriminating
between cases likely versus not likely to have an event.

Suppose y is an observed binary outcome, and ŷ its predicted value. If p̂i is the predicted
probability for case i in the data set, the naive prediction rule is

ŷi = 1 if p̂i ≥ 0.50, and

ŷi = 0 if p̂i < 0.50.

If this rule were applied to the hyperuricemia data using the model in Figure 9.12, a patient
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would be predicted to be hyperuricemic if the predicted probability based on BMI and sex was
0.50 or larger. Figure 9.21 shows observed versus predicted hyperuricemia using 0.50 as a
threshold.

The number of cases with correct predictions is the total number of cases where the predicted
and observed are both "No" or both "Yes", or the sum of the diagonal elements, 402 + 4 = 406. The
prediction rule is correct 406/500 = 81.6% of the time and incorrect 18.4% of the time. The total
error rate for the prediction rule is 0.184.

Observed
Predicted No Yes Sum

No 402 91 493
Yes 3 4 7

Sum 405 95 500

Figure 9.21: Observed versus predicted hyperuricemia, threshold value 0.50, lo-
gistic model with predictors BMI and sex.

The error rates among cases with or without the outcome can be very different from the total
error rate. The false negative rate, or FNR, of a prediction rule is the proportion of times cases
with the outcome are predicted not to have it; it is an estimated conditional probability.
Figure 9.21 shows that among the 95 cases that were hyperuricemic, 91 were predicted to be free
of hyperuricemia, a false negative rate of 91/95 = 0.958. The false positive rate , or FPR, is the
proportion of times cases without the outcome are predicted to have it. For the prediction rule
that uses a threshold of 0.50, the false positive rate is 3/405 = 0.007.

If BMI and sex were used to screen for the possibility of hyperuricemia in a population
similar to the study population, the large false negative rate indicates that it would never be used
in practice. More than 95% of patients with undiagnosed hyperuricemia would be falsely
predicted not to have the condition.

When sex was added to bmi in the model for hyperuricemia, the AIC for the two variable
model was slightly smaller than for the single variable model (461.26 vs. 463.26), suggesting that
the two variable model might provide more accurate predictions. Figure 9.22 shows observed
versus predicted numbers of cases of hyperuricemia in the model with bmi alone. Comparing it
with Figure 9.21 shows the small differences between the model predictions. The model with sex

predicts an additional false negative case, and one fewer false positive.

Observed
0 1 Sum

FALSE 403 92 495
TRUE 2 3 5

Sum 405 95 500

Figure 9.22: Predicted versus observed instances of hyperuricemia, threshold
value 0.50, logistic model with predictor BMI

The error rates of a prediction rule change when the threshold value changes. Increasing the
threshold will lead to both more cases correctly being predicted as having the outcome (more true
positive results) and more cases incorrectly being predicted as having the outcome (more false
positive results). Since there is an increase in true positives, the FNR decreases; since there is an
increase in false positives, the FPR increases.

Figure 9.23 shows how the FPR and FNR change with the threshold value for the prediction
rule. Choosing a threshold is not a statistical problem; it involves assessing which of the two error
rates should be kept small, and that will depend on the clinical situation. In settings where it is
important to avoid missing cases, it is reasonable to prioritize keeping the false negative rate
small. However, it may be the case that for some conditions, the intervention that follows after a
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positive result has serious side effects; this would be a justification for keeping false positive rates
small.

Figure 9.23 shows that the FPR and FNR are approximately 0.40 at a threshold of
approximately p̂ = 0.20. Any threshold value that yields an FNR lower than 0.40 will lead to an
FPR larger than 0.40; correspondingly, reducing the FPR by changing the threshold will increase
the FNR. The figure reinforces the conclusion that the predictors BMI and sex do not provide
enough information to accurately predict hyperuricemia, even though the calibration plot in
Figure 9.20 indicates that the model is a good fit to the data. There is more variability in the
outcome than is captured by the model. This is analogous to linear regression where residual
plots indicate that a model is a reasonable fit to data but the R2 is low.
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Figure 9.23: Estimated false positive (solid line) and false negative (dotted line)
probabilities of hyperuricemia as a function of estimated cutoff value for the pre-
dicted probability of hyperuricemia. Predicted probabilities are from the logistic
model for the odds of hyperuricemia as a function of BMI and sex.

A receiver operating characteristic (ROC) curve is another graphic that shows how a binary
classification rule behaves as its threshold value changes. The ROC curve plots the true positive
rate (TPR) on the vertical axis against the false positive rate (FPR) on the horizontal axis at each
threshold setting for the predicted probability of the outcome. An ROC curve shows directly that
increases in the true positive rate can only be achieved by increasing the false positive rate.

Figure 9.24 shows the ROC curve for the model for hyperuricemia based on BMI and sex.
When the FPR is approximately 0.40, the TPR is approximately 0.60. Figure 9.23 shows that this
corresponds to a threshold value of 0.20.

If a prediction rule is used as a diagnostic test in a clinical setting (e.g., one which predicts
whether someone has a disease), the TPR is the sensitivity of the test, and the FNR is 1 -
specificity. ROC curves are widely used in evaluating diagnostic tests, and are often defined
equivalently as plotting sensitivity against 1 - specificity.

The 45-degree line on an ROC plot is used to distinguish between tests which may have some
value vs. those which are worse than guessing. Let D and DC indicate the presence or absence of a
disease D respectively, and + and − indicate a positive or negative test. For points on the
45-degree line, sensitivity equals 1 - specificity, so

P (+|D) = 1− P (−|DC)

= P (+|DC).

The likelihood of a positive test is the same whether or not disease is present. Bayes’ rule can be



9.5. ASSESSING MODEL ADEQUACY 497

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9.24: Receiver operating curve (ROC) for predicting hyperuricemia from
the logistic model for the odds of hyperuricemia as a function of BMI and sex.
The ROC curve is in blue; the black line is the is 45-degree line y = x.

used to show in this case that

P (D|+)

P (DC |+)
=
P (D)

P (DC)
.

In other words, the odds of disease given a positive test is the same as the odds of disease in the
population in the absence of the test. Diagnostic tests in which the ROC curve lies on the
45-degree line are no better than guessing the presence of disease using the overall prevalence.

The same algebra can be used to show that tests with ROC curves above the 45-degree line,
the odds of disease given a positive test are larger than the odds of disease without the test, i.e., the
diagnostic test is better than guessing based on the prevalence. For tests with ROC curves below
the 45-degree line the odds of disease given a positive test are lower than the odds of disease in
the population; the diagnostic test is worse than guessing based on the population prevalence.

The area under an ROC curve (labeled AUC, AUC-ROC or the c-statistic) is 0.5 when the
curve is the 45-degree line, larger than 0.5 when the curve lies above the 45-degree line (the test is
better than guessing) test and smaller than 0.5 when the curve lies below the 45-degree line (the
test is worse than guessing). It is possible to show

AUC =
P (+|D)

P (+|DC)
.

A randomly selected member of the population without the disease is less likely to test positive by
a factor of the value of AUC than a member selected from the population with the disease. More
simply, the diagnostic test performs better in the population with than without the disease.

Software can be used to calculate estimates and confidence intervals for AUC for a given
ROC. The analyses in this and the next section use the R package cvAUC.

How much better than random guessing is a prediction rule for hyperuricemia based on BMI
and sex? The estimated AUC for Figure 9.24 is 0.678 with 95% confidence interval (0.620, 0.726).
With 95% confidence the model has a estimated chance of 62% to 73% of correctly distinguishing
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between an individual with versus without hyperuricemia. There is no single definition of a good
AUC, but there are guidelines that may be useful in some settings. For biomedical data, Hosmer,
et. al.,23 recommend the guidelines in Figure 9.25.

AUC under ROC curve Suggested interpretation
0.50 No discrimination, no better than random guessing

(0.50,0.70) Poor discrimination
[0.70,0.80) Acceptable discrimination
[0.80,0.90) Excellent discrimination
[0.90,1.00) Outstanding discrimination

Figure 9.25: Hosmer, Lemeshow and Sturdivant suggested guidelines for inter-
preting the area under the ROC curve (AUC).

Using these guidelines, the AUC for the model for hyperuricemia with predictors BMI and
sex discriminates poorly between cases with and without hyperuricemia – adding one more piece
of information that the model would not be useful in a clinical setting.

Figure 9.26 shows four example ROC curves corresponding to hypothetical models with
increasing ability to discriminate: the 45-degree line, AUC = 0.5, random guessing; the green
curve, AUC = 0.667, poor discrimination; blue curve, AUC = 0.785, acceptable discrimination; red
curve, AUC = 0.874, excellent discrimination. ROC curves will be used to compare models for
triage in an emergency department in the case study in Section 9.6.
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Figure 9.26: Example Receiver ROC curves for hypothetical prediction rules. The
black line is the is 45-degree line y = x.

9.5.3 Out-of-sample accuracy of predictions

When predicting outcomes is the goal of an analysis, the data used to estimate a prediction
model is usually called the training data . When the prediction error from a model such as a Brier

23David W Hosmer Jr et al. Applied logistic regression, 3rd ed. John Wiley & Sons, 2013.



9.5. ASSESSING MODEL ADEQUACY 499

score or a false negative rate is estimated using the training data, the estimate is called an
in-sample prediction error or an apparent prediction error. Methods such as maximum likelihood
(used to estimate a logistic regression model) choose parameter estimates that are well matched to
the data, so in-sample prediction error is generally smaller than the prediction error in new data
where the relationships between outcome and predictors may be slightly different. Out-of-sample
prediction error characterizes the behavior of a model when fit to new data. Out-of-sample
prediction error can be estimated in a new dataset, usually called test data or validation data or
using cross-validation when a validation dataset is not available. The use of a validation dataset is
illustrated in Section 9.6.5; this section outlines cross-validation.

Cross-validation

Cross-validation estimates out-of-sample prediction error by repeatedly resampling from the
training data to create a collection of paired training and test datasets. In k-fold cross-validation
the data are randomly divided into k non-overlapping, approximately equal sized subsets, called
folds; typically k = 5 or 10. Each fold is used as training data to re-estimate a model, then a
prediction error (e.g., a Brier score or a false negative rate) is estimated by applying the
re-estimated model to the data not in the fold, i.e., the data held out from the fold. The process
produces k estimates of prediction error, which are then averaged. When the fold sizes are
identical, a simple average can be used since each estimate of prediction error is based on the
same amount of data. Figure 9.27 shows a graphical representation of 5-fold cross-validation.

The randomly chosen subsets i.e., the folds, use training datasets that may reflect different
associations between the response and predictors, so even though cross-validation uses the
training data its estimates of error rates are less subject to the bias of in-sample estimates of error.

Figure 9.27: 5-fold cross-validation.

Cross-validated Brier scores for the hyperuricemia data can be calculated using the R
program cv.glm in the package boot or using the code in the lab for this chapter. For the model
with just BMI, the 5-fold cross-validated Brier score is 0.1484, larger than the apparent Brier score
0.1459. The cross-validated Brier score for the model with BMI and sex is 0.1474. Adding sex to
the model with BMI reduces the Brier score by only 0.001.

Cross-validation can be used for more complicated estimates, such as a calibration curve, but
the principle is the same. For each fold, a model is re-estimated and the calibration curve is
constructed using the data held out from the fold. For 5-fold calibration, the resulting graph
might show the 5 calibration curves as well as a curve constructed using the average value at each
point on the 5 estimated curves.

Cross-validation has some drawbacks – the best choice of k for a given dataset is not always
clear, the test sets are relatively small, and unlike using an external dataset, estimates of error
rates do not generalize to populations that might differ in important ways from the study sample.
However, validation datasets large enough to be useful are rarely available. Cross-validation has
some strengths: it is available in software such as R, does not require an additional dataset, allows
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for relatively large training sets, and averaging the k estimated prediction error rates mitigates the
small size of the test sets. When a validation dataset is not available, cross-validation is the
preferred method of estimating out-of-sample prediction error.

As noted earlier, prediction from statistical models is something that should be done with
great care, especially in a clinical situation where prediction may be a diagnostic tool leading to an
intervention. In this setting is important to examine a statistical model from several perspectives.

What do these methods for assessing a model tell us about the relatively simple model for
predicting hyperuricemia from BMI and sex along with the initial look at significance levels for
predictors and changes in AIC earlier in the chapter? Although the significant p-values for BMI
and sex did not have the interpretation as tests of predefined hypotheses, they suggested a
potentially important association between the predictors and hyperuricemia. While comparing
AIC values did not provide a clear answer as to the value of adding sex as a predictor, the
calibration plots suggested that the two-variable model better fit the data than the model with
only BMI. Brier scores indicate that the two predictors may provide acceptably accurate
predictions overall, but predictions within subsets of individuals either with or without
underlying hyperuricemia were not always accurate, even after adjusting the threshold
probability for predicting presence or absence. In summary, a logistic regression with BMI and
sex fits a model for the log(odds) of hyperuricemia reasonably well, but not well enough to be
used as a diagnostic tool.

The hyperuricemia data is useful for exploring how logistic regression might describe the
association between an outcome and predictors, but it is a simple example that does not reflect the
complexity of many clinical situations. The next section presents a case study on improving a
triage strategy in an hospital emergency department based on a published paper.
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9.6 Case study: Triage in an emergency department

9.6.1 Introduction and background

Most hospital emergency departments triage arriving patients so that the most severely
compromised are given higher priority. It is an especially valuable process when the case load is
high, since waiting time to treatment is an important factor in outcome. This section presents a
case study developing a logistic regression model for triaging patients using data from Kristensen,
et al.,24 a cohort study conducted in the Emergency Department (ED) of the Nordsjælland
University Hospital in Denmark. In the paper, the study team proposed a revision to an ED triage
algorithm based on predictions for the probability of death within 30 days from admission
(30-day mortality). The study used a primary cohort of 6,249 participants to model alternative
triage algorithms and a validation cohort of 6,383 individuals to evaluate the models.

At the time the study was published, the hospital used the Danish Emergency Process Triage
(DEPT) algorithm, a 5-level system ranking patients based on vital signs and presenting
conditions (listed in the Kristensen paper) that assigns color codes for the predicted 30-day
mortality probability. Let p be the probability of a patient dying within 30 days from admission to
the ED. The color codes correspond to the following values of p: "red", p > 0.25; "orange",
0.10 < p ≤ 0.25; "yellow", 0.01 ≤ p ≤ 0.10; "green", p < 0.01; and "blue", minor conditions for which
the patient should not be admitted to the ED. The analysis in this section uses the term target
probabilities for the probability ranges associated with each color. Patients in category "blue" are
not included either in the published analysis or the one presented here, making the triage
classification a 4-level. The colors for target probabilities in the 4 remaining categories can be
thought of as risk categories for a death within 30 days of admission: high risk ("red"), moderately
high risk ("orange"), moderately low risk ("yellow"), and low risk ("green").

Based on prior studies, the Kristensen team conjectured that revising DEPT using the results
of routine biochemical screening normally done in an ED (albumin, creatinine, c-reactive protein,
hemoglobin, lactate dehydrogenase, leukocyte count, potassium, and sodium) would improve the
algorithm compared to the previous scoring based on vital signs and presenting conditions. The
analysis in the Kristensen paper showed that was indeed the case.

This section examines a simpler modification of DEPT – adding the demographic variables
age and sex to the existing color rankings – for several reasons. A more complete analysis might
use a logistic regression that adds age and sex to the original variables used to create DEPT but
those variables were not available for this case study. Readers of this text are unlikely to be
familiar with the definitions of the biochemical measurements and their clinical implications. The
Nordsjælland group used transformations of these measurements to model increased risk of death
for abnormally low or high values of the biochemical measurements, and the transformations
used are beyond the scope of this text. The steps used to build and test models that add only age
and sex to DEPT are similar to those examining more predictors. Finally, while the triage system
augmented by age and sex does not improve DEPT as much as the model in the Kristensen paper,
it does surprisingly well. It may not be a useful tool in an ED, but it is more than sufficient as an
example to study risk classification. Readers interested in the full analysis should be able to read
the Kristensen paper after mastering the material in this section.

Since the goal of this analysis is a potential prediction model, statistical significance levels are
less relevant than model fit and predictive accuracy. In most cases, point estimates, standard

24Michael Kristensen et al. “Routine blood tests are associated with short term mortality and can improve emergency
department triage: a cohort study of> 12,000 patients”. In: Scandinavian Journal of Trauma, Resuscitation and Emergency
Medicine 25.1 (2017), pp. 1–8.
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errors, and confidence intervals are provided for summary statistics and model coefficients
instead of p-values. Model fit is assessed with Hosmer-Lemeshow statistics and calibration curves;
predictive accuracy is estimated using Brier scores and ROC curves.

The full data for both cohorts are contained the data package oibiostat, as
DanishEDPrimaryCohort and DanishEDValidationCohort. These datasets have also been posted by
the authors (DOI:10.5061/dryad.m2bq5). The datasets in oibiostat have been re-formatted for
readability.

9.6.2 Examining the data

The training dataset used here is based on data from 6,203 participants from the original
cohort of 6,279 for whom there were no missing values for the DEPT score, 30-day mortality, age
and sex. Since this excludes only 1.2% (76/6279) of the cohort, there is little chance of bias caused
by a complete case analysis.

Of the 6,203 participants, 325 (5.2%) died within 30 days from admission to the ED.
Figure 9.28 shows the association of the original DEPT scoring with 30-day mortality. The scoring
was based on prior studies of ED outcomes, so, as expected, the χ2 test of for the null hypothesis
of independence shows strong evidence of an association (χ2 = 131, on 3 df
right tail area < 0.001). The scoring identifies clusters of cases with decreasing risk of dying
within 30 days; the estimated probabilities of death decrease monotonically from 49/273 = 0.179
to 51/1972 = 0.026 as the categories change from "red" (highest risk) to "green" (lowest risk).

Died within 30 days
Triage classification No Yes Sum

red 224 49 273
orange 1462 114 1576
yellow 2271 111 2382
green 1921 51 1972
Sum 5878 325 6203

Figure 9.28: Association of DEPT triage classification with 30-day mortality.

Figure 9.29 shows, however, that the observed proportion of deaths falls outside the
predicted range for three of the four categories: "red", "orange" and "green". Since the observed
proportion of deaths is less than the lower bound in the high risk categories "red" and "orange",
too many low risk patients would be classified into those categories. The reverse happens with the
low risk category "green"; the observed proportion of deaths is larger than the upper bound for the
target probabilities. Too many higher risk patients would be classified as low risk.

Likelihood of death within 30 days
Triage classification DEPT target probabilities Observed proportion

red (0.25,1.00] 0.180
orange (0.10,0.25] 0.073
yellow [0.01,0.10] 0.047
green [0.00,0.01) 0.026

Figure 9.29: DEPT target probabilities versus observed proportion of death within
30 days for the DEPT color categories. The target probabilities are the ranges of
30-day mortality probabilities that define the color scores.

Figure 9.30 shows the left-skewed age distribution, with mean 59.6 and median 63 and

DOI:10.5061/dryad.m2bq5
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minimum and maximum ages 16 and 108. The maximum age of 108 is striking, and the histogram
in shows that there are several elders in the study sample at least 100 years old. These cases have
been left in the dataset for the initial analysis, but are re-examined during the modeling process.
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Figure 9.30: Histogram of age in the Danish ED data.

Figure 9.31 shows the association of age and 30-day mortality, with age grouped by quartile.
The table shows (unsurprisingly) that the estimated probability of death increases monotonically
from 6/1537 = 0.004 in the youngest quartile to 184/1542 = 0.119 in the oldest. The odds ratio
comparing 30-day mortality in the oldest to youngest quartile is (184/1358)/(6/1531) = 34.5, 95%
confidence interval (15.5,95.5). The association of age with outcome is clearly important.

Died within 30 days
Age No Yes Sum

(16,45] 1531 6 1537
(45,63] 1587 45 1632
(63,75] 1353 90 1443

(75,108] 1358 184 1542
Sum 5829 325 6154

Figure 9.31: Age quartile versus 30-day mortality

In these data, women are less likely than men to die within 30 days of admission to the ED. In
Figure 9.32 the estimated probabilities for 30-day mortality for women and men are, respectively,
157/3217 = 4.9% and 168/2986 = 5.6%. The OR for 30-day mortality comparing men to women is
(168/2818)/(157/3060) = 1.16, with 95% confidence interval (0.92,1.46). The association between
sex and outcome does not appear to be a strong one.

Died within 30 days
Sex No Yes Sum

female 3060 157 3217
male 2818 168 2986
Sum 5878 325 6203

Figure 9.32: Association of sex with 30-day mortality.
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9.6.3 Modeling the relationship between 30-day mortality and DEPT triage
score, age and sex.

The initial analysis of the training data uses logistic regression with response variable 30-day
mortality and predictors DEPT triage score, age and sex. Even though sex is not by itself strongly
associated with 30-day mortality, it is included in the initial model to explore its relationship with
outcome after adjusting for age and DEPT score. The conditions for a logistic regression are met
in this dataset: the cases are independent; 369 individuals died within 30 days after admission so
a model can have up to 33 parameters (369/11 = 33.5); and since the study did not gather data
using outcome-based sampling, probabilities can be estimated from logistic regression. The
calibration plots and goodness-of-fit statistics shown later support the assumption that a logistic
model is reasonable for estimating the association between 30-day mortality and the predictors
DEPT, age and sex.

Figure 9.33 shows the initial model. The columns labeled 2.5% and 97.5% are, respectively,
the lower and upper bounds of 95% confidence intervals for the coefficients. Except for sex, all of
the confidence intervals suggest substantial associations between the predictors and outcome –
the upper bounds of the confidence intervals are substantially smaller than 0. The confidence
interval for the coefficient of sex suggests a more moderate association but sill has a confidence
interval that sex does not include 0.

Estimate Std. Error 2.5% 97.5%
(Intercept) -5.589 0.367 -6.310 -4.869

triageorange -1.244 0.198 -1.632 -0.856
triageyellow -1.545 0.197 -1.932 -1.159
triagegreen -2.122 0.223 -2.560 -1.685

age 0.059 0.004 0.050 0.067
sexmale 0.274 0.120 0.039 0.508

Figure 9.33: Logistic regression with response 30-day mortality and predictors
DEPT triage, age and sex.

The role of the predictor sex warrants a closer look, for several reasons. In most countries,
women outlive men, and that is true in the country where these data were collected. According to
the Norwegian Institute of Public Health, the life expectancy Norwegian women in 2016 was 84.2
years versus 80.6 for men. This suggests that as Norwegians age, women are more robust than
their male counterparts, suggesting that 30-day mortality rates for elders in an ED may be
different for females than males. In fact, Figure 9.34 shows that the association between sex and
30-day mortality is very different within age groups. In the age group 16-45, the overall
proportion of deaths within 30 days is low ((5 + 1)/(791 + 746) = 0.0039, but the relative risk of
death comparing males to females is (1/746)/(5/791) = 0.212. Males in this age group are
approximately 80% less likely to die than females. In contrast, in the highest age category, the
relative risk of death comparing males to females is 1.646. Males in this age category are
approximately 65% more likely to die within 30 days. There appears to be an age-sex interaction
in the risk of death within 30 days of admission.

A logistic model for 30-day mortality with the addition of an age-sex interaction is shown in
Figure 9.35. None of the coefficient confidence intervals cover 0.

AIC statistics can be used to examine the potential predictive value of adding predictors to
the base model with only the DEPT score in the sequence of models that add age (M1), then sex

(M2), then the interaction age-sex (M3). Figure 9.36 shows the deviance (D), number of predictors
(p) and AIC (D + 2(p+ 1)) statistics for each of the 3 models. The values of the AIC statistics
continue to decrease as parameters are added to the model so all of these variables will be
retained.
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Died within 30 days
Age category Sex Yes No
(16,45] female 786 5

male 745 1
(45,63] female 778 21

male 809 24
(63,75] female 650 46

male 703 44
(75,108] female 818 85

male 540 99

Figure 9.34: 30-day mortality by sex, within each of the 4 age categories.

Estimate Std. Error 2.5% 97.5%
(Intercept) -4.514 0.444 -5.383 -3.645

triageorange -1.253 0.199 -1.643 -0.863
triageyellow -1.564 0.198 -1.953 -1.175
triagegreen -2.155 0.225 -2.595 -1.714

age 0.045 0.006 0.034 0.056
sexmale -1.983 0.655 -3.266 -0.699

age:sexmale 0.030 0.009 0.013 0.047

Figure 9.35: Logistic regression with response 30-day mortality and predictors
triage, age, sex and an age-sex interaction.

How well does model M3 fit the data? The Hosmer-Lemeshow statistic does not provide
evidence for a lack of fit (χ2 = 9.7 on 8 df, right tail area 0.3). Calibration curves, however, suggest
something else.

Figure 9.37 shows calibration curves using the two methods discussed earlier – computing
average predicted probabilities with observed proportions of outcomes in buckets of the data (the
plotted black points), and fitting a smooth curve to the scatterplot of observed outcomes versus
predicted probabilities (the solid blue curve).

The black points with vertical lines provide a view similar to Figure 9.22 used to show the fit
of the model for the association between hyperuricemia and BMI. The estimated proportion is
plotted against the average probability in each bucket, and the scatter above and below the dashed
line y = x shows the extent to which the observed proportions and predicted probabilities agree.
Unlike Figure 9.22, the large size of this data set has been exploited by adjusting the buckets
adaptively to place more buckets in regions with a high density of predicted probabilities, so that
each bucket contains approximately 1% of the predicted probabilities. The solid blue line uses the
R function loess to fit a smooth curve to predicted probabilities versus observed events.

Taken together, the two curves show that model predictions are reasonably accurate when the
predicted probabilities are less then 0.2, but the smooth curve shows predicted probabilities
larger than 0.2 are less accurate. The downward slope of the smooth blue curve indicates that
observed outcomes happen less frequently that the model predicts. Age is the only predictor that
is not categorical so large predicted probabilities may be caused by outliers in age.

In the training dataset there are 5 cases older than 100 years or older, and none died within
30 days. It is possible that these elderly cases are different from the rest of the population in
important ways. There are two general approaches that might be used here – adapt the model
using a transformation of the predictor age, or drop the cases 100 or older from the analysis and
note that the subsequent model applies only to patients less than 100 years old. The analysis here
uses the latter approach.

Figure 9.38 uses the same calculations as for Figure 9.37, but with the model re-estimated
using the dataset restricted to patients less that 100 years old. The calibration plot shows the
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Model Deviance No. Predictors (p) AIC
M1 2195.5 4 2205.5
M2 2190.2 5 2202.2
M3 2177.9 6 2192.9

Figure 9.36: Deviance and AIC statistics for the sequence of models M1 - M3
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Figure 9.37: Predicted probabilities versus observed proportions, with data
grouped adaptively into buckets of predicted probabilities (black points), and a
smooth curve fit to the scatterplot of observed outcomes versus predicted proba-
bilities. The light blue dots at y = 0 and y = 1 denote observed values of 30-day
mortality (0 = "No", 1 = "Yes") plotted against predicted probabilities.

model fits the restricted dataset better than the full dataset. The Hosmer-Lemeshow
goodness-of-fit statistic again shows no evidence of lack of fit, with χ2 = 0.4 on 8 df, right tail area
= 0.40.
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Figure 9.38: A figure with the same interpretation as Figure 9.37, but based on
the dataset with cases removed whose age was ≥ 100 years.

Figure 9.39 shows the model coefficients using the age-restricted dataset. This is the model
that will be used for a revised triage score in the next section.
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Estimate Std. Error 2.5% 97.5%
(Intercept) -4.518 0.445 -5.390 -3.646

triageorange -1.301 0.199 1.692 -0.910
triageyellow -1.611 0.199 -2.000 -1.221
triagegreen -2.179 0.225 -2.619 -1.739

age 0.045 0.006 0.034 0.056
sexmale -2.151 0.671 -3.465 -0.837

age:sexmale 0.033 0.009 0.015 0.050

Figure 9.39: Logistic regression with response 30-day mortality and predictors
triage, age, sex and an age-sex interaction; dataset restricted to patients < 100
years old

9.6.4 Triaging patients with a modified score

The model in Figure 9.39 can be used to create a revised triage scoring system in the training
data, using the same probability cutoff values as the DEPT classification, but now applied to
individuals younger than 100. Using the risk descriptors rather instead of colors, individuals with
a predicted probability larger than 0.25 are labeled high-risk, between 0.10 and 0.25, moderately
high risk, between 0.01 and 0.10, moderately low risk, and less than 0.01, low risk.

Unless otherwise stated, all tables and figures in this section used the age-restricted dataset.
Since this dataset differs slightly from the full dataset explored in Section 9.6.2, summary tables
of predictors and outcome may differ from earlier tables.

Figures 9.40 and 9.41 compare the behavior of the old and new scoring, using the risk
descriptors for both DEPT and the new scores. Figure 9.40 compares the behavior of the DEPT
triage classification with the modified version. The second column shows the target ranges of
30-day mortality probabilities. The third and fourth columns show estimated 30-day mortality
probabilities when participants are assigned a risk score using the DEPT or revised classification,
respectively. The last column contains a 10-fold cross-validated estimate of the 30-day mortality
probabilities using the revised classification. With the revised score, all 30-day mortality
proportions now fall within the predicted ranges, as opposed to the DEPT scoring where 3 of 4
categories fell outside the predicted range. The 10-fold cross-validated estimates of mortality
probabilities in the last column are based on the assumption that the model that adds age, sex and
an age-sex interaction is fixed. The coefficients are re-estimated in each fold, and the mortality
probabilities are estimated using the cases held-out of the fold. The values in the table show the
estimates after averaging over the 10 folds. These out-of-sample estimates are generally consistent
with the in-sample estimates in column 4.

The improvement in prediction accuracy of the revised score is the result of it placing fewer
low risk patients in the high risk categories. The two-way table in Figure 9.41 shows that the
revised triage classification places fewer patients than DEPT in the two highest risk categories.
Only 115 of the 271 cases labeled high risk in DEPT are designated high risk; the remaining 156
are redistributed to lower risk categories. That also happens in the moderately high risk
classification in DEPT; of the 1576 originally in that category, 797 are coded moderately high risk
and the majority of the remaining cases are regrouped into lower risk categories.

The observed and cross-validated proportions in Figure 9.40 for the model using DEPT, age
and sex is well-calibrated but the DEPT score based on the original model is not, at least in the
training data.

The estimated Brier score for the DEPT classification in the training cohort is 0.049. Using
10-fold cross validation, the estimated and cross-validated Brier score for the revised triage is
0.046, a small improvement.

Section 9.6.5 uses an external dataset to check the predictions of the revised classification
system.
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Risk Category Target Probability DEPT Revised Cross-Validated
Classification Classification Revised Classification

High (0.25,1.00] 0.181 0.409 0.373
Moderately High (0.10,0.25] 0.072 0.122 0.124
Moderately Low [0.01,0.10] 0.047 0.046 0.047

Low [0.00,0.01) 0.026 0.001 0.001

Figure 9.40: Estimated probability of 30-day mortality by risk category and triage
score in the age-restricted training data. The last column shows a 10-fold cross-
validated estimate of 30-day mortality using the revised score.

Revised Predicted Risk
High Moderately High Moderately Low Low Sum

High 78 88 87 18 271
DEPT Predicted Moderately High 29 399 971 177 1576

Risk Moderately Low 8 263 1631 480 2382
Low 0 47 1198 724 1969
Sum 115 797 3887 1399 6198

Figure 9.41: DEPT versus revised risk category in the age restricted dataset based
on the model which adds age, sex and an age-sex interaction to the DEPT classifi-
cation.

9.6.5 Evaluating the revised triage score

The team for the Danish study made available both a training dataset (their primary cohort)
used in deriving their revision to the DEPT score and a test dataset (their validation cohort). The
training and test data are based on cohorts treated in the emergency department during 2010 and
2013, respectively. The 2013 cohort consists of 6,383 individuals treated in the Nordsjælland
University Hospital ED. The test dataset for this analysis consists of 6,224 participants with no
missing values on DEPT score, age or sex, are not coded with DEPT score "blue" (no intervention
needed) and are less than 100 years old. There were 249 deaths within 30 days after admission, a
proportion of 249/6224 = 0.040, lower than the 325/6198 = 0.052 proportion in the age-restricted
training data.

When a model estimated in a training dataset is evaluated in test data, the model and its
coefficients are not re-estimated. Predictions, estimated Brier scores, etc., are calculated for the
test data using the model estimated in the training set.

An ED triage scoring system performs adequately if, on average, it classifies patients into
correct risk groups. The two right-most columns in Figure 9.40 show that in the training sample
the DEPT score modified with the addition of age, sex and an age-sex interaction groups patients
into categories with 30-day mortality proportions all in the target ranges. Figure 9.42 shows
similar information for the test data.

Generally, a model is expected to perform less well in a test versus a training dataset. In this
case, however, the Brier score in the test dataset is 0.036 compared to 0.046 in the training data.
Evidently, the model including DEPT score, age and sex is more accurate in predicting
probabilities in the test data than in the training data.

Along with the low Brier score, calibration curves help explain why the new score provides
accurate predictions for 30-day mortality. Figure 9.43 shows the calibration curves that have been
used earlier to evaluate model fit. Predicted probabilities and observed proportions are close.

The ROC curves discussed in Section 9.5.2 can be used to quantify the improvement in
prediction from adding age, sex and the age-sex interaction to the DEPT scoring system.
Figure 9.44 shows ROC curves for the DEPT and modified triage systems in the test data. The
blue ROC curves correspond to the model that adds age, sex and an age-sex interaction to DEPT,
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Risk Category Target Probability DEPT Classification Revised Classification
High (0.25,1.00] 0.342 0.320

Moderately High (0.10,0.25] 0.060 0.125
Moderately Low [0.01,0.10] 0.038 0.034

Low [0.00,0.01) 0.020 0.001

Figure 9.42: Estimated probability of 30-day mortality by risk category and triage
score in the age-restricted training data. Revised scoring uses coefficients from
the model fit to the age-restricted training data with predictors age, sex and an
age-sex interaction.
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Figure 9.43: Calibration plot for the DEPT, age and age-sex interaction model
showing predicted probabilities versus observed proportions in the age-restricted
test dataset.

the green to DEPT alone. The area under the ROC curve (AUC) for the expanded model applied to
the test data is 0.802 (95% confidence interval (0.79,0.825)). The corresponding value for the
DEPT classification alone is 0.632 (confidence interval (0.590,0.674)). The DEPT classification has
an estimated 63% chance of distinguishing between an individual who will survive at least 30
days after admission to an ED versus dying; the expanded model has an estimated 80% chance to
make that distinction.25
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Figure 9.44: Receiver operating curves (ROC) for predicting 30-day mortality,
green for the DEPT triage system, blue for the model that adds age and sex to
DEPT. The black line is the is 45-degree line y = x.

25The AUC estimates and confidence intervals were calculation using the function AUC in the R package cvAUC.
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9.6.6 Summary

The ED triage model explored here study illustrates the steps used in building and evaluating
a prediction model. The analysis makes compromises, however, that limit its practical value. A
more complete modification of the DEPT scoring should start by using the predictors used to
construct DEPT, add age and sex to those predictors and construct a model based on the full set of
predictors. The analysis here has not used any of the biochemical variables used in the Kristensen
paper, many of which are strongly associated with 30-day mortality. The analysis dropped
individuals 100 years old or older, rather than exploring transformations of the age variable that
might have led to better fit with the full dataset and to a model that could be applied to all age
groups. Incorporating an age-sex interaction led to a better fitting model, but it is possible that a
model without the interaction term would be easier to interpret and still have made reasonably
accurate predictions.

A full analysis would explore some questions raised by the analysis here. What is the reason
for the surprisingly low mortality among the oldest members of the study population? Are they
truly more hardy, or are very old patients referred to the ED for different, perhaps less serious
conditions and still coded as high-risk? What might explain the age-sex interaction?

Despite the caveats, the analysis illustrates aspects that readers should look for in similar
analyses. The source of the data should be clearly articulated; steps in model building should be
clearly explained; model evaluation should incorporate diagnostic plots whenever possible and
not rely on only numerical measures of fit. The predictive ability in models for binary outcome
data should always include ROC curves and estimates and confidence intervals for AUC.
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9.7 Notes

This and other chapters use body mass index (BMI) in several examples and analyses because
it is widely available and has been measured and recorded in many studies of human populations.
Despite its widespread use, BMI is now increasingly questioned because of its potential bias when
applied to certain populations.

BMI was first proposed in 1832 by Adolphe Quetelet based on data from Caucasian western
Europeans and was originally known as the Quetelet Index. The category labels for BMI were set
in 1995 by an expert panel sponsored by WHO but their applicability in Asian and other
populations have been questioned and studied. Several large studies have confirmed that high
and low values of BMI in Asians confer an elevated risk of death just as in European populations
(for example Lin, et al.26) but did not find evidence that the WHO cutpoints should be adjusted
for Chinese populations. Nevertheless, we chose not to use the current WHO categories when
analyzing the hyperuricemia dataset. In general, labeled categories associated with cutpoints in a
continuous predictor should be interpreted with caution. Chapter 2 of Wiggins and Jones27

describe some of Quetelet’s work on BMI and his place in the history of statistics.
The examples using the TB dataset were chosen to illustrate concepts in logistic regression

rather than a detailed analysis and examine only the two predictors level of education and
presence of MDR TB. For readers interested in a more in-depth look at the data, the paper by
Lackey referenced in Section 9.3.1 uses logistic regression to examine the association between TB
treatment interruption a many more predictors.

26Wen-Yuan Lin et al. “Body mass index and all-cause mortality in a large Chinese cohort”. In: Cmaj 183.6 (2011),
E329–E336.

27Wiggins C and Jones ML. How Data Happened. A History from the Age of Reason to the Age of Algorithms (2023).
WW Norton and Company.
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9.8 Exercises

9.8.1 Introduction to simple logistic regression

9.1 Odds and probabilities. Suppose an experiment consists of rolling a fair six-sided die once.

(a) What are the odds of rolling a six?

(b) What are the odds of rolling an even number?

(c) Explain to someone who has not taken statistics the interpretation of the odds versus the probability of
rolling an even number.

9.2 Diabetes. In the United States, approximately 9% of the population have diabetes.

(a) What are the odds that a randomly selected member of the US population has diabetes?

(b) Suppose that in a primary care clinic, the prevalence of diabetes among the patients seen in the clinic is
12%. What is the probability that a randomly selected patient in the clinic has diabetes?

(c) If in a particular population the probability of diabetes is twice what it is in the general population, does
the odds of diabetes double?

9.3 Hyperuricemia and BMI, Part I. The fourth quintile of BMI in Figure 9.2 ranges from 25.02 to 26.64
meters per (kg)2 and has median value 25.93.

(a) Calculate the estimated conditional odds and probability of hyperuricemia for the value bmi = 25.93
using the model shown in Figure 9.5.

(b) Does the conditional probability of hyperuricemia calculated for the fourth quintile in Figure 9.2 lie
above or below the value estimated in part (a)?

9.4 Interpreting model parameters, Part I. The curve with the solid line in Figure 9.4 corresponds to
β0 = −3.0 and β1 = 0.6.

(a) Using the formula for the curve, calculate the odds ratio for E comparing x = 6 to x = 4.

(b) Using this curve, calculate the relative risk of the event E comparing the value of the predictor x = 6
versus x = 4.

(c) What role does the intercept play in the two calculations in (a) and (b)?

9.5 Interpreting model parameters, Part II. The curve with the dotted line in Figure 9.4 corresponds to
β0 = 3.0 and β1 = −0.6.

(a) Using the formula for this curve, calculate the odds ratio for E comparing x = 6 to x = 4.

(b) Calculate the relative risk of the event E comparing the value of the predictor x = 6 versus x = 4.

(c) What role does the intercept play in the two calculations in (a) and (b)?

9.6 CPR and survival to discharge, Part I. Suppose a logistic regression model is used to estimate the
association of the odds of surviving to discharge and the number of minutes cardiopulmonary resuscitation
(CPR) was given to patients admitted to an emergency room following cardiac arrest. The response variable
is survival to hospital discharge and the predictor is length of CPR in minutes. In the model the coefficient of
CPR time is -0.065.

(a) Is increased time of CPR associated with a increase or decrease in the chance of survival to discharge?

(b) What is OR for survival to discharge comparing someone given CPR for 10 versus someone requiring 20
minutes of CPR time?

(c) In three sentences, describe your answers to parts (a) and (b) to someone who has not studied statistics.

9.7 CPR and survival to discharge, Part II. Suppose in the model for CPR and survival to discharge the
coefficient of the intercept is 1.44.
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(a) What are the odds of survival to discharge for someone requiring 10 minutes of CPR?

(b) Check your answer to Part I(b) by calculating the odds of survival to discharge for someone requiring 20
minutes of CPR and using it and the answer to (a) above to calculate the the OR for 10 versus 20 minutes
of CPR.

(c) Calculate the estimated probabilities of survival to discharge for 10 and 20 minutes of CPR.

(d) What is the relative risk of survival to discharge, comparing 10 versus 20 minutes of CPR.

(e) Explain the distinction between the estimated OR and RR to someone who has not taken statistics.

9.8 Hyperuricemia and dietary magnesium, Part I. The investigators who studied hyperuricemia in
China also measured daily dietary intake of magnesium. The logistic regression model for the association
between hyperuricemia (the response variable) and dietary magnesium (the predictor, measured in units of 1
gram) is given in the table below.

Intercept Magnesium (per gram)
-1.46 0.033

(a) Write the algebraic form of the logistic regression model for the association of hyperuricemia and dietary
magnesium.

(b) Is dietary magnesium positively or negatively associated with hyperuricemia?

(c) What are the predicted odds of hyperuricemia for someone with 0.5 grams magnesium/day in their diet?

(d) By what factor will predicted odds change if a person with 0.5gm of dietary magnesium reduces their
intake by 50%?

(e) What is the predicted probability of hyperuricemia for someone with 0.5gm magnesium in their daily
diet?

(f) By what factor will predicted probability change if a person with 0.5gm of dietary magnesium reduces
their intake by 50%?

9.9 Hyperuricemia and age. The logistic regression model for the association between hyperuricemia (the
response variable) and age (the predictor, measured years) is given in the table below.

Intercept Age (per year)
-1.089 -0.007

(a) Write the algebraic form of the logistic regression model for the association of hyperuricemia and age.

(b) Is increasing age associated with an increase or decrease in the odds of hyperuricemia?

(c) What are the predicted odds of hyperuricemia for a 50 year old from this population?

(d) By what factor will predicted odds differ between someone who is 30 and someone who is 50 years old?

(e) What is the predicted probability of hyperuricemia for a 50 year old?

(f) What is the relative risk of hyperuricemia, comparing a 50 year old to a 30 year old?

9.8.2 Inference for Simple Logistic Regression

9.10 Logistic Regression short answer, Part I. For the true/false questions, provide a reason for your
answer. The short answer questions can usually be answered in 2 - 3 sentences.

(a) True or false: Equation 9.6 can always be used to estimate probabilities after fitting a logistic regression.

(b) True or false: Using the results of a logistic regression, the odds ratio for two cases with numerical
predictor values 100 and 110 will be the same for two different cases with predictor values 20 and 30.

(c) In your own words, explain the concepts of the odds of an event.

(d) Suppose in a dataset, a binary outcome is a response variable and there is a single numerical predictor.
True or false: if both linear and logistic regression models are fit to the data, the estimated slopes will
have the same interpretation.

9.11 Logistic Regression short answer, Part II. For the true/false questions, provide a reason for your
answer. The short answer questions can usually be answered in 2 - 3 sentences.
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(a) True or false: Since the sampling distributions of the estimated parameters in a logistic regression do not
depend on sample size, logistic regression can be fit to arbitrarily small data sets.

(b) Suppose a logistic regression has been fit to a dataset and the estimated slope parameter for the log(odds)
is 0.750. Are increasing values of the predictor associated with increased or decreased risk of the
outcome?

(c) Suppose the dataset was gathered in a prospective study with exposure based sampling. Is the
information in part (b) sufficient to estimate the probability of the outcome, given a value of the
exposure variable?

(d) If the standard error of the estimate in part (b) is 0.650, does the study provide strong evidence for the
association of the predictor with outcome?

9.12 TB treatment interruption and sex of the participant. The two-way table in Figure 9.45 shows the
relationship between the occurrence of a two-month TB treatment interruption and the recorded sex of the
study participant in the TB data. Figure 9.46 contains the result of a logistic regression fit to the participant
level data with response two-month interruption and predictor sex, with "female" as the reference category.

Treatment Interruption
No Yes Sum

Female 461 29 490
Male 645 98 743
Sum 1106 127 1233

Figure 9.45: Sex versus a two-month treatment interruption

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.766 0.191 -14.449 0.000

sexMale 0.882 0.220 4.008 0.000

Figure 9.46: Logistic regression, response two month interruption, predictor
recorded sex of participant

(a) Show that the odds ratios for an interruption, comparing males to females, is the same in using the data
in the table and the logistic regression.

(b) Show that a 95% confidence interval for the OR in part (a) can be calculated using either the logistic
regression output or the methods outlined Section 8.6.4 for ORs calculated in two-way tables.

9.13 Hyperuricemia and dietary magnesium, Part II. The table below shows more detail about the logistic
regression model for hyperuricemia and dietary magnesium.

Estimate Std. Error
(Intercept) -1.462 0.229

magnesium.intake.gm 0.033 0.526

(a) What is the value of the z-statistic used to test the null hypothesis of no association between
hyperuricemia and dietary magnesium?

(b) Do the data show a statistically significant association between hyperuricemia and dietary magnesium?

(c) Construct a 95% confidence interval for the coefficient of dietary magnesium. What is the interpretation
of the interval?

(d) Construct a 95% confidence interval for the odds ratio comparing individuals with 0.75gm versus
0.25gm of daily dietary magnesium.

9.14 Hyperuricemia and age, Part II.The table below shows additional details of the logistic regression
model for the association between hyperuricemia and age.

Estimate Std. Error
(Intercept) -1.089 0.817

age -0.007 0.015
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(a) What is the value of the z-statistic for testing the null hypothesis of no association between
hyperuricemia and age?

(b) Do the data show a statistically significant relationship between hyperuricemia and age?

(c) Construct and interpret a 95% confidence interval for the coefficient of age.

(d) Find a 95% confidence interval for the odds ratio for hyperuricemia comparing a 75 versus a 50 year old
individual.

9.15 Rare events . Public health research often involves the study of the association between an exposure
and rare events. Radiation of certain wavelengths, called ionizing radiation, may have sufficient energy to
damage DNA in a way that may lead to cancer. Radon is a form of ionizing radiation that is found in many
homes and is known to cause lung cancer. It is produced from a natural breakdown of uranium in soil, rock
and water. Radon is measured in in picocuries per liter, (pCI/L), and the US Environmental Protection
Agency considers an average exposure of 4 pCI/L a safe level for adults.

Suppose a team is studying the possibility that pediatric leukemia may be associated with a low dose of
radon exposure during pregnancy. In 10,000 randomly selected homes in a metropolitan area, the team
records radon levels (in picocuries per liter, pCI/L) and whether or not a woman in the home is pregnant.
One year later the team records whether or not the recorded pregnancies led to a successful birth and, if so,
the health status of the infant.

(a) Suppose 1,500 of the women in the homes successfully delivered infants (all singleton births) and of
those infants, 0.25% of the infants were diagnosed with a from of leukemia. Does the team have
sufficient data to study the association of the dose of radon and the diagnosis of leukemia in an infant
using logistic regression?

(b) Assume that the estimated proportions of successful pregnancies and a subsequent diagnosis of
leukemia in an infant are accurate in this metropolitan area. What is the minimum number of homes the
team should sample to reliably use logistic regression to study a dose-response relationship between
infant leukemia and radon?

(c) Suggest a way that the data from the original study be used to calculate a larger sample size that would
be more likely to yield enough events to use logistic regression in this setting, and calculate that sample
size using your suggestion.

9.16 Challenger disaster, Part I. On January 28, 1986, a routine launch was anticipated for the Challenger
space shuttle. Seventy-three seconds into the flight, disaster happened: the shuttle broke apart, killing all
seven crew members on board. An investigation into the cause of the disaster focused on a critical seal called
an O-ring, and it is believed that damage to these O-rings during a shuttle launch may be related to the
ambient temperature during the launch. The table below summarizes observational data on O-rings for 23
shuttle missions, where the mission order is based on the temperature at the time of the launch. Temp gives
the temperature in Fahrenheit, Damaged represents the number of damaged O- rings, and Undamaged
represents the number of O-rings that were not damaged.

Shuttle Mission 1 2 3 4 5 6 7 8 9 10 11 12

Temperature 53 57 58 63 66 67 67 67 68 69 70 70
Damaged 5 1 1 1 0 0 0 0 0 0 1 0
Undamaged 1 5 5 5 6 6 6 6 6 6 5 6

Shuttle Mission 13 14 15 16 17 18 19 20 21 22 23

Temperature 70 70 72 73 75 75 76 76 78 79 81
Damaged 1 0 0 0 0 1 0 0 0 0 0
Undamaged 5 6 6 6 6 5 6 6 6 6 6

(a) Each column of the table above represents a different shuttle mission. Examine these data and describe
what you observe with respect to the relationship between temperatures and damaged O-rings.

(b) Failures have been coded as 1 for a damaged O-ring and 0 for an undamaged O-ring, and a logistic
regression model was fit to these data. A summary of this model is given below. Describe the key
components of this summary table in words.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 11.6630 3.2963 3.54 0.0004

Temperature -0.2162 0.0532 -4.07 0.0000

(c) Write out the logistic model using the point estimates of the model parameters.

(d) Based on the model, do you think concerns regarding O-rings are justified? Explain.

9.17 Hyperuricemia and BMI, Part II.

(a) Use the entries in Figure 9.8 to calculate a 95% confidence interval for the odds ratio for hyperuricemia
comparing two individuals with BMI 27 and 23.

(b) Ignoring issues of multiple testing, can the interval be used to support the claim that the data show that
a BMI of 27 puts someone at significantly higher risk of hyperuricemia that someone with a BMI of 23?

9.18 Challenger disaster, Part II. Exercise 9.16 introduced us to O-rings that were identified as a plausible
explanation for the breakup of the Challenger space shuttle 73 seconds into takeoff in 1986. The
investigation found that the ambient temperature at the time of the shuttle launch was closely related to the
damage of O-rings, which are a critical component of the shuttle. See this earlier exercise if you would like to
browse the original data.

50 55 60 65 70 75 80

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y 

of
 d

am
ag

e

Temperature (Fahrenheit)

(a) The data provided in the previous exercise are shown in the plot. The logistic model fit to these data may
be written as

log
(
p̂

1− p̂

)
= 11.6630− 0.2162× T emperature

where p̂ is the model-estimated probability that an O-ring will become damaged. Use the model to
calculate the probability that an O-ring will become damaged at each of the following ambient
temperatures: 51, 53, and 55 degrees Fahrenheit. The model-estimated probabilities for several
additional ambient temperatures are provided below, where subscripts indicate the temperature:

p̂57 = 0.341 p̂59 = 0.251 p̂61 = 0.179 p̂63 = 0.124

p̂65 = 0.084 p̂67 = 0.056 p̂69 = 0.037 p̂71 = 0.024

(b) Add the model-estimated probabilities from part (a) on the plot, then connect these dots using a smooth
curve to represent the model-estimated probabilities.

(c) Describe any concerns you may have regarding applying logistic regression in this application, and note
any assumptions that are required to accept the model’s validity.

9.8.3 Multiple logistic regression

9.19 Risk of fracture.
Osteoporosis a bone disease characterized by decreasing bone mineral density and bone mass and is

associated with a higher risk of fractures (broken bones) after falls. The Global Longitudinal Study of
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Osteoporosis in Women (GLOW) collected data on over 60,000 women over 55 years of age diagnosed with
osteoporosis. This exercise uses data from the study provided in Hosmer, Lemeshow and Sturdivant,28

which contains additional information about the study. Briefly, the study followed the participants during
the study period, recording potential predictors of fracture at enrollment and the first occurrence of a
fracture during the follow-up period. The GLOW data can be found in the R package APLORE3.

The data in this exercise contains information from 500 participants and includes the occurrence of a
fracture and selected possible risk factors. This sample was drawn by Hosmer, Lemeshow and Sturdivant
from the full dataset by oversampling participants with fractures and under-sampling those without
fractures, since only approximately 4% of the participants experienced fractures.

Figure 9.47 shows a logistic regression model with response variable whether or not the participant
experienced a fracture during the study and two predictor variables: an indicator of whether a prior fracture
was present and age in years.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.214 0.848 -4.97 0.000

priorfracYes 0.839 0.234 3.58 0.000
age 0.041 0.012 3.38 0.001

Figure 9.47: Logistic Regression for fracture with predictors age and presence of
prior fracture

(a) Use the model to estimate the odds ratio for the occurrence of a fracture among 60 year old women,
comparing women with a prior fracture to those without a prior fracture.

(b) Estimate the odds ratio for the occurrence of a fracture among women who have not had a prior fracture,
comparing 75 year old women to those who are 65 years old.

(c) Does the design of the study and this sample of 500 participants support the estimates of ORs in parts (a)
and (b)? Justify your answer.

(d) Can the data from the study be used to estimate prevalence differences and ratios in parts (a) and (b)?
Justify your answer.

9.20 HIV test status and TB treatment interruption.
Show that the conditions for a χ2 test are met for the data displayed in Figure 9.10.

9.21 Female horseshoe crabs, color and satellites.
Show that the conditions for a χ2 test are met for the data displayed in Figure 9.14.

9.22 Emergency room outcomes in Denmark, Part I.
An important problem in emergency medicine is the prioritization of high-risk patients. Traditional

triage algorithms classify patients into categories based on vital signs (such as heart rate and level of
consciousness) in addition to the patient’s reason for seeking medical care: "red" (life-threatening), "orange"
(seriously ill), "yellow" (ill), "green" (needs assessment), and "blue" (minor complaints). A study in
Denmark29 studied the association of triage score and other variables with 30 day mortality in a dataset of
12,661 individuals30 treated in the Emergency Department (ED) of Nordsjælland University Hospital in
Denmark.

The model in Figure 9.48 is the result of fitting a logistic regression with response variable 30-day
mortality (0 = alive 30 days a after admission) and predictor triage score in a random sample of 1,000 cases
from the 5,371 participants in the primary dataset used for initial model building. In this sample of 1,000,
there were 62 deaths within 30 days from admission to the ED.

Individuals classified as category blue were not included in the study.

(a) What is the reference category in the regression?

28David W Hosmer Jr et al. Applied logistic regression, 3rd ed. John Wiley & Sons, 2013.
29Michael Kristensen et al. “Routine blood tests are associated with short term mortality and can improve emergency

department triage: a cohort study of> 12,000 patients”. In: Scandinavian Journal of Trauma, Resuscitation and Emergency
Medicine 25.1 (2017), pp. 1–8.

30Data available at DOI:10.5061/dryad.m2bq5.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.551 0.416 -3.73 0.000

triageorange -0.958 0.474 -2.02 0.043
triageyellow -1.290 0.468 -2.76 0.006
triagegreen -1.585 0.518 -3.06 0.002

Figure 9.48: Logistic regression with response 30 day mortality and predictor
triage level, using a random sample of 1,000 cases from Danish ED study primary
cohort.

(b) Is the pattern in the estimates of the coefficients consistent with traditional triage coding?

(c) Write the equation for the model.

(d) Does the intercept have a meaningful interpretation in this model? If so, what is its interpretation?

(e) What is the estimated OR and 95% confidence interval for 30 day mortality, comparing category "yellow"
with "red"?

(f) What is the OR for 30 day mortality, comparing category "yellow" with "orange"?

9.23 Emergency room outcomes in Denmark, Part II.
Figure 9.49 is a contingency table showing the association between 30-day mortality and DEPT triage

classification for the data used in Exercise 9.22.

Died within 30 days
No Yes Sum

red 33 7 40
orange 258 21 279
yellow 394 23 417
green 253 11 264
Sum 938 62 1000

Figure 9.49: Contingency table of 30-day mortality by triage classification, Danish
ED study, random sample of 1,000 participants

(a) Show that the table can be used to calculate the estimate of the intercept given in Figure 9.48.

(b) The data in the table can be used to estimate each of the coefficients in the logistic model. Show that it
can be used to calculate the estimate of the coefficient for the triage category "green".

(c) Can the estimates of the standard errors in Figure 9.48 be calculated directly from the table?

9.24 Emergency room outcomes in Denmark, Part III.
The dataset used in Exercise 9.22 also contains the age and sex of the participants. Figure 9.50 shows

the logistic model in which age in years and sex have been added to the traditional triage coding.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.560 0.880 -6.32 0.000

triageorange -1.062 0.501 -2.12 0.034
triageyellow -1.245 0.494 -2.52 0.012
triagegreen -1.489 0.543 -2.74 0.006

age 0.058 0.010 5.89 0.000
sexmale 0.009 0.277 0.03 0.974

Figure 9.50: Logistic regression with response 30 day mortality and predictors
triage level, age and sex, using a random sample of 1,000 cases from Danish ED
study.

(a) Does the intercept in this model have a meaningful interpretation? If so, what is the interpretation?

(b) Is increasing age associated with an increase or decrease in the risk of 30 day mortality?
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(c) The residual deviance for the models in Figures 9.50 and 9.48 are, respectively, 407.58 and 463.60.
Conduct a test of the null hypothesis that the pair of variables age and sex do not add useful information
to a model based on triage score alone.

(d) Based on the estimated model and your answers to the above, do you believe that both age and sex
should be retained in the model? Explain your answer.

9.25 Interaction in logistic regression.
The interaction term in the model given in Equation 9.30 would not be retained in a model with BMI

and sex, but it is instructive to explore the implications of an interaction when estimating ORs.

(a) Calculate the estimated OR for hyperuricemia for two males with BMI 33.2 vs 30.

(b) Repeat the calculation for two females.

(c) How do these estimates differ from the corresponding ORs when using the model without an interaction
in Figure 9.12?

9.26 Color and width of female crabs.
Females with wider carapaces are known to attract more males. A logistic regression with carapace

width as the only predictor confirms the association between the odds of one or more satellites and width –
the estimated log(odds) are 0.497 with p < 0.001. When color is held constant, each centimeter of width
increases the odds of having satellites by a factor of e0.497 = 1.644. How strong is the evidence that color is
an important predictor in a model that adjusts for carapace width?

Figure 9.51 shows an estimated model with both width and color as predictors.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -12.715 2.762 -4.60 0.000

width 0.468 0.106 4.43 < 0.001
colorMedDark 1.106 0.592 1.87 0.062
colorMedLight 1.402 0.548 2.56 0.011

colorLight 1.330 0.853 1.56 0.119

Figure 9.51: Logistic regression with horseshoe crab data, response presence of
male satellites, predictors width and color.

The residual deviances for the regression with just width and with width and color are, respectively,
194.45 and 187.46, respectively.

(a) Calculate the deviance statistic and its significance level for the nested model that includes just width
compared to the larger model with both width and color.

(b) Calculate the AIC for the two models in part (a)

(c) What do you conclude?
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Appendix A

End of chapter exercise solutions

1 Introduction to data

1.1 (a) Treatment: 10/43 = 0.23→ 23%.

(b) Control: 2/46 = 0.04 → 4%. (c) A higher percentage of patients in the treatment group were pain free

24 hours after receiving acupuncture. (d) It is possible that the observed difference between the two group

percentages is due to chance.

1.3 (a) “Is there an association between air pollution exposure and preterm births?" (b) 143,196 births in

Southern California between 1989 and 1993. (c) Measurements of carbon monoxide, nitrogen dioxide, ozone,

and particulate matter less than 10µg/m3 (PM10) collected at air-quality-monitoring stations as well as length

of gestation. Continuous numerical variables.

1.5 (a) “Does explicitly telling children not to cheat affect their likelihood to cheat?". (b) 160 children between

the ages of 5 and 15. (c) Four variables: (1) age (numerical, continuous), (2) sex (categorical), (3) whether they

were an only child or not (categorical), (4) whether they cheated or not (categorical).

1.7 (a) Control: the group of 16 female birds that received no treatment. Treatment: the group of 16 female

birds that were given supplementary diets.

(b) "Does egg coloration indicate the health of female collared flycatchers?"

(c) Darkness of blue color in female birds’ eggs. Continuous numerical variable.

1.9 (a) Each row represents a participant.

(b) The response variable is colon cancer stage. The explanatory variables are the abundance levels of the five

bacterial species.

(c) Colon cancer stage: ordinal categorical variable. Abundance levels of bacterial species: continuous numer-

ical variable.

1.11 (a) The population of interest consists of babies born in Southern California. The sample consists of the

143,196 babies born between 1989 and 1993 in Southern California.

(b) Assuming that the sample is representative of the population of interest, the results of the study can be

generalized to the population. The findings cannot be used to establish causal relationships because the study

was an observational study, not an experiment.

1.13 (a) The population of interest consists of asthma patients who rely on medication for asthma treatment.

The sample consists of the 600 asthma patients ages 18-69 who participated in the study.

(b) The sample may not be representative of the population because study participants were recruited, an

example of a convenience sample. Thus, the results of the study may not be generalizable to the population.

The findings can be used to establish causal relationships because the study is an experiment conducted with

control, randomization, and a reasonably large sample size.
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1.15 (a) Experiment.

(b) The experimental group consists of the chicks that received vitamin supplements. The control group

consists of the chicks that did not receive vitamin supplements.

(c) Randomization ensures that there are not systematic differences between the control and treatment groups.

Even if chicks may vary in ways that affect body mass and corticosterone levels, random allocation essentially

evens out such differences, on average, between the two groups. This is essential for a causal interpretation of

the results to be valid.

1.17 (a) Observational study.

(b) Answers may vary. One possible confounding variable is the wealth of a country. A wealthy country’s

citizens tend to have a higher life expectancy due to a higher quality of life, and the country tends to have a

higher percentage of internet users because there is enough money for the required infrastructure and citizens

can afford computers. Wealth of a country is associated with both estimated life expectancy and percentage of

internet users. Omitting the confounder from the analysis distorts the relationship between the two variables,

such that there may seem to be a direct relationship when there is none.

1.19 (a) Simple random sampling is reasonable if 500 students is a large enough sample size relative to the

total student population of the university.

(b) Since student habits may vary by field of study, stratifying by field of study would be a reasonable decision.

(c) Students in the same class year may have more similar habits. Since clusters should be diverse with respect

to the outcome of interest, this would not be a good approach.

1.21 (a) Non-responders may have a different response to this question, e.g. parents who returned the sur-

veys likely don’t have difficulty spending time with their children.

(b) It is unlikely that the women who were reached at the same address 3 years later are a random sample.

These missing responders are probably renters (as opposed to homeowners) which means that they might be

in a lower socio-economic class than the respondents.

(c) This is an observational study, not an experiment, so it is not advisable to draw conclusions about causal

relationships. The relationship may be in the other direction; i.e., that these people go running precisely be-

cause they do not have joint problems. Additionally, the data are not even sufficient to provide evidence of an

association between running and joint problems because data have only been collected from individuals who

go running regularly. Instead, a sample of individuals should be collected that includes both people who do

and do not regularly go running; the number of individuals in each group with joint problems can then be

compared for evidence of an association.

1.23 The lead author’s statements are not accurate because he or she drew conclusions about causation (that

increased alcohol sales taxes lower rates of sexually transmitted infections) from an observational study. In

addition, although the study observed that there was a decline in gonorrhea rate, the lead author generalized

the observation to all sexually transmitted infections.

1.25 (a) Randomized controlled experiment. (b) Explanatory: treatment group (categorical, with 3 levels).

Response variable: Psychological well-being. (c) No, because the participants were volunteers. (d) Yes, because

it was an experiment. (e) The statement should say “evidence” instead of “proof”.
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1.27 (a) The two distributions have the same median since they have the same middle number when ordered

from least to greatest. Distribution 2 has a higher IQR because its first and third quartiles are farther apart

than in Distribution 2.

(b) Distribution 2 has a higher median since it has a higher middle number when ordered from least to great-

est. Distribution 2 has a higher IQR because its first and third quartiles are farther apart than in Distribution 1.

(c) Distribution 2 has a higher median since all values in this distribution are higher than in Distribution 1.

The two distributions have the same IQR since the distance between the first and third quartiles in each dis-

tribution is the same.

(d) Distribution 2 has a higher median since most values in this distribution are higher than those in Distri-

bution 1. Distribution 2 has a higher IQR because its first and third quartiles are farther apart than those of

Distribution 1.

1.29 (a) The distribution is bimodal, with peaks between 15-20 and 25-30. Values range from 0 to 65.

(b) The median AQI is about 30.

(c) I would expect the mean to be higher than the median, since there is some right skewing.

1.31 (a) The median is a much better measure of the typical amount earned by these 42 people. The mean

is much higher than the income of 40 of the 42 people. This is because the mean is an arithmetic average and

gets affected by the two extreme observations. The median does not get effected as much since it is robust to

outliers. (b) The IQR is a much better measure of variability in the amounts earned by nearly all of the 42

people. The standard deviation gets affected greatly by the two high salaries, but the IQR is robust to these

extreme observations.

1.33 (a) These data are categorical. They can be summarized numerically in either a frequency table or

relative frequency table, and summarized graphically in a bar plot of either counts or proportions.

(b) The results of these studies cannot be generalized to the larger population. Individuals taking the survey

represent a specific subset of the population that are conscious about dental health, since they are at the

dentist’s office for an appointment. Additionally, there may be response bias; even though the surveys are

anonymous, it is likely that respondents will feel some pressure to give a "correct" answer in such a setting,

and claim to floss more often than they actually do.

1.35 (a) Yes, there seems to be a positive association between lifespan and length of gestation. Generally, as

gestation increases, so does life span.

(b) Positive association. Reversal of the plot axes does not change the nature of an association.

1.37 (a) 75% of the countries have an adolescent fertility rate less than or equal to 75.73 births per 1,000

adolescents.

(b) It is likely that the observations are missing due to the Iraq War and general instability in the region during

this time period. It is unlikely that the five-number summary would have been affected very much, even if the

values were extreme; the median and IQR are robust estimates, and the dataset is relatively large, with data

from 188 other countries.

(c) The median and IQR decreases each year, with Q1 and Q3 also decreasing.

1.39 (a) 4,371/8,474 = 0.56→ 56%

(b) 110/190 = 0.58→ 58%

(c) 27/633 = 0.04→ 4%

(d) 53/3,110 = 0.02→ 2%

(e) Relative risk: 27/633
53/3,110 = 2.50. Yes, since the relative risk is greater than 1. A relative risk of 2.50 indicates

that individuals with high trait anger are 2.5 times more likely to experience a CHD event than individuals

with low trait anger.

(f) Side-by-side boxplots, since blood cholesterol level is a numerical variable and anger group is categorical.
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2 Probability

2.1 (a) False. These are independent trials.

(b) False. There are red face cards.

(c) True. A card cannot be both a face card and an ace.

2.3 (a) 1
4 .

Solution 1: A colorblind male has genotype X−Y . He must have inherited X− from his mother (probability of
1
2 ) and Y from his father (probability of 1

2 ). Since these are two independent events, the probability of both
occuring is ( 1

2 )( 1
2 ) = 1

4 .
Solution 2: Determine the possibilities using a Punnett square. There are 4 equally likely possibilities, one of
which is a colorblind male. Thus, the probability is 1

4 .

X+ Y

X+ X+X+ X+Y

X− X+X− X−Y

(b) True. An offspring of this couple cannot be both female and colorblind.

2.5 (a) 0.25. Let H represent the event of being a high school graduate and F represent the event of being a

woman. P (H) = P (H and W ) + P (H and WC ) = P (H |W )P (W ) + P (H |WC )P (WC ) = (0.20)(0.50) + (0.30)(0.50) =

0.25.

(b) 0.91.(AC ) = P (AC and W ) + P (AC and WC ) = (1− 0.09) + (1− 0.09) = 0.91.

(c) 0.25. Let X represent the event of having at least a Bachelor’s degree, where B represents the event of

attaining at most a Bachelor’s degree and G the event of attaining at most a graduate or professional degree.

P (X |WC ) = P (B|WC ) + P (G|WC ) = 0.16 + 0.09 = 0.25.

(d) 0.26. P (X |W ) = P (B|W ) + P (G|W ) = 0.17 + 0.09 = 0.26.

(e) 0.065. Let XW be the event that a woman has at least a Bachelor’s degree, and XM be the event that a man

has at least a Bachelor’s degree. Assuming that the education levels of the husband and wife are independent,

P (XW and XM ) = P (XW )× P (XM ) = (0.25)(0.26) = 0.065. This assumption is probably not reasonable, because

people tend to marry someone with a comparable level of education.

2.7 (a) Let C represent the event that one urgent care center sees 300-449 patients in a week. Assuming that

the number of patient visits are independent between urgent care centers in a given county for a given week,

the probability that three random urgent care centers see 300-449 patients in a week is [P (C)]3 = (0.288)3 =

0.024. This assumption is not reasonable because a county is a small area with relatively few urgent care

centers; if one urgent care center takes in more patients than usual during a given week, so might other

urgent care centers in the same county (e.g., this could occur during flu season).

(b) 2.32 × 10−7. Let D represent the event that one urgent care center sees 450 or more patients in a week.

Assuming independence, the probability that 10 urgent care centers throughout a state all see 450 or more

patients in a week is [P (D)]10 = (0.217)10 = 2.32 × 10−7. This assumption is reasonable because a state is a

large area that contains many urgent care centers; the number of patients one urgent care center takes in is

likely independent of the number of patients another urgent care center in the state takes in.

(c) No, it is not possible, because it is not reasonable to assume that the patient visits for a given week are

independent of those for the following week.

2.9 (a) If the class is not graded on a curve, they are independent. If graded on a curve, then neither indepen-

dent nor disjoint – unless the instructor will only give one A, which is a situation we will ignore in parts (b)

and (c). (b) They are probably not independent: if you study together, your study habits would be related,

which suggests your course performances are also related. (c) No. See the answer to part (a) when the course

is not graded on a curve. More generally: if two things are unrelated (independent), then one occurring does

not preclude the other from occurring.
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2.11 (a) 0.60 + 0.20− 0.18 = 0.62

(b) 0.18/0.20 = 0.90

(c) 0.11/0.33 = 0.33

(d) No, because the answers to parts (c) and (d) are not equal. If global warming belief were independent of

political party, then among liberal Democrats and conservative Republicans, there would be equal proportions

of people who believe the earth is warming.

(e) 0.06/0.34 = 0.18

2.13 (a) 375,264/436,968 = 0.859

(b) 229,246/255,980 = 0.896

(c) 0.896. This is equivalent to (b).

(d) 146,018/180,988 = 0.807

(e) 4,719/7,394 = 0.638

(f) No, because the answers to (c) and (d) are not equal. If gender and seat belt usage were independent, then

among males and females, there would be the same proportion of people who always wear seat belts.

2.15 The PPV is 0.8248. The NPV is 0.9728.

P (D |T +) = P (T + |D)P (D)
P (T + |D)P (D)+P (T + |DC )P (DC )

= (0.997)(0.0259)
(0.997)(0.0259)+(1−0.926)(1−0.259) = 0.8248.

P (DC |T −) = P (T − |DC )P (DC )
P (T − |DC )P (DC )+P (T − |D)P (D)

= (0.926)(1−0.259)
(0.926)(1−0.259)+(1−0.997)(0.259) = 0.9728.

HIV? Result

yes,  0.259

positive,  0.997
0.259*0.997 = 0.2582

negative,  0.003
0.259*0.003 = 0.0008

no,  0.741

positive,  0.074
0.741*0.074 = 0.0548

negative,  0.926
0.741*0.926 = 0.6862

2.17 0.0714. Even when a patient tests positive for lupus, there is only a 7.14% chance that he actually has

lupus. House may be right.

Lupus? Result

yes,  0.02

positive,  0.98
0.02*0.98 = 0.0196

negative,  0.02
0.02*0.02 = 0.0004

no,  0.98

positive,  0.26
0.98*0.26 = 0.2548

negative,  0.74
0.98*0.74 = 0.7252

2.19 (a) Let E represent the event of agreeing with the idea of evolution and D be the event of being a

Democrat. From the problem statement, P (E|D) = 0.67. P (EC |D) = 1− P (E|D) = 1− 0.67 = 0.33.

(b) Let I represent the event of being an independent. P (E|I) = 0.65, as stated in the problem.

(c) Let R represent the event of being a Republican. P (E|R) = 1− P (EC |R) = 1− 0.48 = 0.52.

(d) 0.35. P (R|E) = P (E and R)
P (E) = P (R)P (E|R)

P (E) = (0.40)(0.52)
0.60 = 0.35.

2.21 Mumps is the most likely disease state, since P (B3|A) = 0.563, P (B1|A) = 0.023, and P (B2|A) = .415.

P (Bi |A) = P (A|Bi )P (Bi )
P (A) . P (A) = P (A and B1)+P (A and B2)+P (A and B3) = P (A|B1)P (B1)+P (A|B2)P (B2)+P (A|B3)P (B3).

2.23 (a) Let A be the event of knowing the answer and B be the event of answering it correctly. Assume that

if a participant knows the correct answer, they answer correctly with probability 1: P (B|A) = 1. If they guess

randomly, they have 1 out of m chances to answer correctly, thus P (B|AC ) = 1/m. P (A|B) = 1·p
(1·p)+( 1

m ·(1−p))
=

p

p+ 1−p
m

.

(b) 0.524. Let A be the event of having an IQ over 150 and B be the event of receiving a score indicating an IQ

over 150. From the problem statement, P (B|A) = 1 and P (B|AC ) = 0.001. P (AC |B) =
0.001·(1− 1

1,100 )

(1·( 1
1,100 ))+(0.001·(1− 1

1,100 ))
=

0.524.
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2.25 (a) In descending order on the table, the PPV for each age group is 0.003, 0.064, 0.175, 0.270; the NPV

for each age group is 0.999, 0.983, 0.948, 0.914.

(b) As prevalence of prostate cancer increases by age group, PPV also increases. However, with rising preva-

lence, NPV decreases.

(c) The probability that a man has prostate cancer, given a positive test, necessarily increases as the overall

probability of having prostate cancer increases. If more men have the disease, the chance of a positive test

result being a true positive increases (and the chances of the result being a false positive decreases). The de-

creasing NPV values follow similar logic: if more men have the disease, the chance of a negative test being a

true negative decreases (and the chances of the result being a false negative increases).

(d) Lowering the cutoff for a positive test would result in more men testing positive, since men with PSA val-

ues 2.5 ng/ml to 4.1 ng/ml were not previously classified as testing positive. Since the sensitivity of a test is

the proportion who test positive among those who have disease, and the number with disease does not change,

the proportion will increase, except in the rare and unlikely situation where the additional positive tests are

among only men without the disease.

2.27 (a) Frequency of X+X+: 0.863. Frequency of X+X−: 0.132. Frequency of X−X−: 0.005. Frequency of

X−Y : 0.07. Frequency of X+Y : 0.93. From frequency of X−X−, frequency of X− allele is
√

0.005 = 0.071; thus,

frequency of X+ allele is 1− 0.071 = 0.929. Frequency of X+Y is 1− 0.093 = 0.07.

(b) 0.033. Let A be the event that two parents are not colorblind, and B represent the event of having a

colorblind child. On the tree, × represents a mating between two genotypes. P (B|A) = [P (X+X+ ×X+Y |A) ·
P (B|X+X+ ×X+Y )] + [P (X+X− ×X+Y |A) · P (B|X+X− ×X+Y )] = (0.867)(0) + (0.133)(1/4) = 0.033.

A

X+X+×X+Y

B BC

X+X−×X+Y

B BC

2.29 (a) Calculate P (M ∩B), the probability a dog has a facial mask and a black coat. Note that the event M
consists of having either a unilateral mask or a bilateral mask.

P (M ∩B) =P (M1 ∩B) + P (M2 ∩B)

=P (M1|B)P (B) + P (M2|B)P (B)

=(0.25)(0.40) + (0.35)(0.40)

=0.24

The probability an Australian cattle dog has a facial mask and a black coat is 0.31.
(b) Calculate P (M2), the prevalence of bilateral masks. The event of having a bilateral mask can be partitioned
into either having a bilateral mask and a red coat or having a bilateral mask and a black coat.

P (M2) =P (R∩M2) + P (B∩M2)

=P (M2|R)P (R) + P (M2|B)P (B)

=(0.10)(0.60) + (0.35)(0.40)

=0.20

The prevalence of bilateral masks in Australian cattle dogs is 0.20.
(c) Calculate P (R|M2), the probability of having a red coat given having a bilateral mask. Apply the definition
of conditional probability.
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P (R|M2) =
P (R∩M2)
P (M2)

=
P (M2|R)P (R)

P (M2)

=
(0.10)(0.60)

0.20
=0.30

The probability of being a Red Heeler among Australian cattle dogs with bilateral facial masks is 0.30.
(d) The following new information has been introduced:

- P (D1|R,M0) = P (D1|R,M1) = 0.15, P (DC |R,M0) = P (DC |R,M1) = 0.60.
- P (M2 ∩D2 ∩R) = 0.012, P (M2 ∩D1 ∩R) = 0.045
- P (M2 ∩D2 ∩B) = 0.012, P (M2 ∩D1 ∩B) = 0.045
- P (D1|M0,B) = P (D1|M1,B) = 0.05, P (D2|M0,B) = P (D2|M1,B) = 0.01

i. Calculate P (M2 ∩DC ∩R).

P (M2 ∩DC ∩R) =P (DC |M2,R)P (M2|R)P (R)

=P (DC |M2,R)(0.10)(0.60)

To calculate P (DC |M2,R), first calculate P (D1|M2,R) and P (D2|M2,R) from the joint probabilities given
in the problem, then apply the complement rule.

P (D1|M2,R) =
P (M2 ∩D1 ∩R)
P (M2 ∩R)

=
0.045

(0.10)(0.60)
= 0.75

P (D2|M2,R) =
P (M2 ∩D2 ∩R)
P (M2 ∩R)

=
0.012

(0.10)(0.60)
= 0.20

Back to the original question...

P (M2 ∩DC ∩R) =P (DC |M2,R)P (M2|R)P (R)

=P (DC |M2,R)(0.10)(0.60)

=[1− (0.75 + 0.20)](0.10)(0.60)

=(0.05)(0.10)(0.60)

=0.003

The probability that an Australian cattle dog has a bilateral mask, no hearing deficits, and a red coat is
0.003.
ii. Calculate P (DC |M2,B).

P (DC |M2,B) =1− [P (D1|M2,B) + P (D2|M2,B)]

=1−
[
P (D1 ∩M2 ∩B)
P (M2 ∩B)

+
P (D2 ∩M2 ∩B)
P (M2 ∩B)

]
=1−

[
0.045

P (M2|B)P (B)
+

0.012
P (M2|B)P (B)

]
=1−

[
0.045

(0.35)(0.40)
+

0.012
(0.35)(0.40)

]
=0.593

The proportion of bilaterally masked Blue Heelers without hearing deficits is 0.593.
iii. Calculate P (D |R) and P (D |B).
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P (D |R) =P (D ∩M0|R) + P (D ∩M1|R) + P (D ∩M2|R)

=[1− P (DC |R,M0)](P (M0|R) + [1− P (DC |R,M1)](P (M1|R) + [1− P (DC |M2,R)](P (M2|R)

=(1− 0.60)(0.50) + (1− 0.60)(0.40) + (1− 0.05)(0.10)

=0.455

P (D |B) =P (D ∩M0|B) + P (D ∩M1|B) + P (D ∩M2|B)

=[P (D1|B,M0) + P (D2|B,M0)](P (M0|B) + [P (D1|B,M0) + P (D2|B,M0)](P (M1|B)

+ [1− P (DC |M2,B)](P (M2|B)

=(0.05 + 0.01)(0.40) + (0.05 + 0.01)(0.25) + (1− 0.593)(0.35)

=0.181

The prevalence of deafness among Red Heelers is higher, at 0.455 versus 0.181 in Blue Heelers.
iv. Calculate P (B|DC ).

P (B|DC ) =
P (B∩DC )

P (DC )

=
P (DC |B)P (B)

P (DC ∩B) + P (DC ∩R)

=
[1− P (D |B)]P (B)

[1− P (D |B)]P (B) + [1− P (D |R)]P (R)

=
(1− 0.181)(0.40)

(1− 0.181)(0.40) + (1− 0.455)(0.60)

=0.50

The probability that a dog is a Blue Heeler given that it is known to have no hearing deficits is 0.50.

3 Distributions of random variables

3.1 (a) 13. (b) No, these 27 students are not a random sample from the university’s student population. For

example, it might be argued that the proportion of smokers among students who go to the gym at 9 am on a

Saturday morning would be lower than the proportion of smokers in the university as a whole.

3.3 (a) The probability of drawing three hearts equals (13/52)(12/51)(11/50) = 0.0129, and the probability of

drawing three black cards equals (26/52)(25/51)(24/50) = 0.1176; thus, the probability of any other draw is

1−0.0129−0.1176 = 0.8694. E(X) = 0.0129(50)+0.1176(25)+0.8694(0) = 3.589. V ar(X) = 0.0129(50−3.589)2+

0.1176(25− 3.589)2 + 0.8694(0− 3.589)2 = 93.007. SD(X) =
√
V ar(X) = 9.644.

(b) Let Y represent the net profit/loss, where Y = X−5. E(Y ) = E(X−5) = E(X)−5 = −1.412. Standard deviation

does not change from a shift of the distribution; SD(Y ) = SD(X) = 9.644.

(c) It is not advantageous to play, since the expected winnings are lower than $5.

3.5 (a) 215 eggs. Let X represent the number of eggs laid by one gull. E(X) = 0.25(1) + 0.40(2) + 0.30(3) +

0.05(4) = 2.15. E(100X) = 100E(X) = 215.

(b) 85.29 eggs. V ar(X) = 0.25(1−2.15)2+0.40(2−2.15)2+0.30(3−2.15)2+0.05(4−2.15)2 = 0.7275. V ar(100X) =

1002V ar(X) = 7275→
√

7275 = 85.29.
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3.7 (a) Binomial conditions are met: (1) Independent trials: In a random sample across the US, it is reasonable

to assume that whether or not one 18-20 year old has consumed alcohol does not depend on whether or not

another one has. (2) Fixed number of trials: n = 10. (3) Only two outcomes at each trial: Consumed or did not

consume alcohol. (4) Probability of a success is the same for each trial: p = 0.697.

(b) Let X be the number of 18-20 year olds who have consumed alcohol; X ∼ Bin(10,0.697). P (X = 6) = 0.203.

(c) Let Y be the number of 18-20 year olds who have not consumed alcohol; Y ∼ Bin(10,1− 0.697). P (Y = 4) =

P (X = 6) = 0.203.

(d) X ∼ Bin(5,0.697). P (X ≤ 2) = 0.167.

(e) X ∼ Bin(5,0.697). P (X ≥ 1) = 1− P (X = 0) = 0.997.

3.9 (a) µ34.85, σ = 3.25 (b) Z = 45−34.85
3.25 = 3.12. 45 is more than 3 standard deviations away from the mean,

we can assume that it is an unusual observation. Therefore yes, we would be surprised. (c) Using the normal

approximation, 0.0009. With 0.5 correction, 0.0015.

3.11 (a) Both O+ and O- individuals can donate blood to a Type O+ patient; n = 15, p = 0.45. µ = np = 6.75.

σ =
√
np(1− p) = 1.93.

(b) Only O- individuals can donate blood to a Type O- patient; n = 15, p = 0.08. P (X ≥ 3) = 0.113.

3.13 0.132. Let X be the number of IV drug users who contract Hepatitis C within a month; X ∼ Bin(5,0.30),

P (X = 3) = 0.132.

3.15 (a) Let X represent the number of infected stocks in the sample; X ∼ Bin(250,0.30). P (X = 60) = 0.006.

(b) P (X ≤ 60) = 0.021.

(c) P (X ≥ 80) = 0.735.

(D) 40% of 250 is 100. P (X ≤ 100) = 0.997. Yes, this seems reasonable; it is essentially guaranteed that within

a sample of 250, no more than 40% will be infected.

3.17 (a) (200)(0.12) = 24 cases of hyponatremia are expected during the marathon.

(b) Let X represent the number of cases of hyponatremia during the marathon. P (X > 30) = 0.082.

3.19 (a) 8.85%. (b) 6.94%. (c) 58.86%. (d) 4.56%.

(a)
−1.35 0

(b)
0 1.48

(c)
0

(d)
−2 0 2

3.21 (a) 0.005. (b) 0.911. (c) 0.954. (d) 1.036. (e) -0.842

3.23 (a) Verbal: N (µ = 151,σ = 7), Quant: N (µ = 153,σ = 7.67). ZVR = 1.29, ZQR = 0.52. She did better on

the Verbal Reasoning section since her Z-score on that section was higher.

VR

Z = 1.29

QR

Z = 0.52

(b) P ercVR = 0.9007 ≈ 90%, P ercQR = 0.6990 ≈ 70%. 100% − 90% = 10% did better than her on VR, and

100%− 70% = 30% did better than her on QR.

(c) 159. (d) 147.

3.25 (a) 0.115. (b) The coldest 10% of days are colder than 70.59◦F.

3.27 (a) 0.023. (b) 72.66 mg/dL.
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3.29 (a) 82.4%. (b) About 38 years of age.

3.31 (a) n = 50, and p = 0.70. µ = np = 35. σ =
√
np(1− p) = 3.24.

(b) Both np and n(1−p) are greater than 10. Thus, it is valid to approximate the distribution as X ∼N (35,3.24),

where X is the number of 18-20 year olds who have consumed alcohol. P (X ≥ 45) = 0.001.

3.33 Let X represent the number of students who accept the offer; X ∼ Bin(2500,0.70). This distribution

can be approximated by a N (1750,22.91). The approximate probability that the school does not have enough

dorm room spots equals P (X ≥ 1,786) = 0.06.

3.35 The data appear to follow a normal distribution, since the points closely follow the line on the normal

probability plot. There are some small deviations, but this is to be expected for such a small sample size.

3.37 (a) P (X = 2) = exp−2(22)
2! = 0.271. (b) P (X ≤ 2) = P (X = 0) + P (X = 1) + P (X = 2) = 0.677. (c) P (X ≥ 3) =

1− P (X ≤ 2) = 0.323.

3.39 (a) µ = λ = 75, σ =
√
λ = 8.66. (b) Z = −1.73. Since 60 is within 2 standard deviations of the mean, it

would not generally be considered unusual. Note that we often use this rule of thumb even when the normal

model does not apply. (c) Using Poisson with λ = 75: 0.0402.

3.41 (a) The expected number of cases of osteosarcoma in NYC in a given year is 11.2. (b) Let X represent
the number of osteosarcoma cases diagnosed. The probability that 15 or more cases will be diagnosed in a
given year is the quantity P (X ≥ 15) = 1− P (X < 15) = 1− P (X ≤ 14) = 0.161. (c) First, calculate λB given that
n = 450,000 for Brooklyn: 3.6. The probability of observing 10 or more cases in Brooklyn in a given year is
the quantity P (XB ≥ 10) = 1 − P (XB < 10) = 1 − P (XB ≤ 9) = 0.004. (d) No, he is not correct. The probability
calculated in c) deals only with Brooklyn: the probability that there are 10 or more cases in Brooklyn for a
single year. It does not say anything about cases in other boroughs. If we assume independence between
boroughs, the probability that the official is referring to is:

P (X = 0 in other boroughs)× P (X ≥ 10 in Brooklyn).

There is no reason to expect that P (X = 0 in other boroughs) should equal 1, so this probability is differ-

ent from the one in part c). (e) o, this probability is not equal to the probability calculated in part c). Over

five years, there are five opportunities for the event of 10 or more cases in Brooklyn in a single year to occur.

Let Y represent the event that in a single year, 10 or more cases of osteosarcoma are observed in Brooklyn. If

we assume independence between years, then Y follows a binomial distribution with n = 5 and p of success as

caculated in part c); P (Y = 1) = 0.020.

3.43 (a) λ for a population of 2,000,000 male births is 400. The probability of at most 380 newborn males

with hemophilia is P (X ≤ 380), where X ∼ Pois(400): 0.165.

(b) P (X ≥ 450) = 0.0075.

(c) The number of male births is (1/2)(1,500,000) = 750,000. The rate λ for one year is 150. Over 5 years, the

rate λ is 750. The expected number of hemophilia births over 5 years is 750 and the standard deviation is√
750 = 27.39.

3.45 (a) On average, 2 women would need to be sampled in order to select a married woman (µ = 1/p =

2.123), with standard deviation 1.544 (σ =

√
(1−p)
p2 ).

(b) µ = 3.33. σ = 2.79.

(c) Decreasing the probability increases both the mean and the standard deviation.

3.47 (a) LetX represent the number of stocks that must be sampled to find an infected stock; X ∼Geom(0.30).

P (X ≤ 5) = 0.832.

(b) P (X ≤ 6) = 0.882.

(c) P (X ≥ 3) = 1− P (X ≤ 2) = 0.49.
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3.49 (a) 0.8752 × 0.125 = 0.096. (b) µ = 8, σ = 7.48.

3.51 (a) 0.0804. (b) 0.0322. (c) 0.0193.

3.53 (a) 0.102, geometric with p = 1994/14,604 = 0.137.

(b) 0.854, binomial with n = 10, p = 0.137.

(c) 0.109, binomial with n = 10, p = 0.137.

(d) The mean and standard deviation of a negative binomial random variable with r = 4 and p = 0.137 are

29.30 and 13.61, respectively.

3.55 (a) µ = 2.05; σ2 = 1.77.

(b) Let X represent the number of soapy-taste detectors; X ∼ HGeom(1994,14604 − 1994,15). P (X = 4) =

0.09435.

(c) P (X ≤ 2) = 0.663.

(d) 0.09437, from the binomial distribution. With a large sample size, sampling with replacement is highly

unlikely to result in any particular individual being sampled again. In this case, the hypergeometric and

binomial distributions will produce equal probabilities.

3.57 (a) The marginal distributions forX is obtained by summing across the two rows, and for Y by summing
the columns. The marginal probabilities for X = 0 and X = 1 are 0.60 and 0.40, and for Y = −1 and Y = 1 are
both 0.50; i.e., pX (0) = 0.60, pX (1) = 0.40, pY (−1) = pY (1) = 0.50 (b) The mean and variance of X are calculated
using the formulas in Section 3.1.2 and 3.1.3 and are

µX = (0)(0.60) + (1)(0.40) = 0.40

σ2
X = (0− 0.40)2(0.60) + (1− 0.40)2(0.40) = 0.24

The standard deviation of X is
√

0.24 = 0.49. (c) The two standardized values of X are obtained by subtracting
the mean of X from each value and dividing by the standard deviation. The two standardized values are -0.82
and 1.23. (d) The correlation between X and Y adds the 4 products of the standardized values, weighted by
the values in the joint distribution:

ρX,Y = (−0.82)(−1)(0.20) + (−0.83)(1)(0.40) + (1.23)(−1)(0.30) + (1.23)(1)(0.10) = −.41

(e) No. The correlation between X and Y is not zero.

3.59 (a) Sum over the margins to calculate the marginal distributions.

pY (−1) = 0.25 pY (0) = 0.20 pY (1) = 0.55

pX (−1) = 0.45 pX (0) = 0.20 pX (1) = 0.35

(b) The expected value of X is calculated as follows:

E(X) =
∑
i

xiP (X = xi ) = (−1)(0.45) + (0)(0.20) + (1)(0.35) = −0.10

(c) The variance of Y is calculated by first calculating E(Y ), then using that in the formula for a variance of a
random variable.

E(Y ) =
∑
i

yiP (Y = yi ) = (−1)(0.25) + (0)(0.20) + (1)(0.55) = 0.30

Var(Y ) =
∑
i

(yi −E(Y ))2P (Y = yi ) = (−1− 0.30)2(0.25) + (0− 0.30)2(0.20) + (1− 0.30)2(0.55) = 0.71

(d) P (X = −1|Y = 0) = 0/0.20 = 0; P (X = 0|Y = 0) = 0.10/0.20 = 0.50; P (X = 1|Y = 0) = 0.10/0.20 = 0.5.
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3.61 (a) No. The new marginal distributions for the costs for the two members of the couple are shown in the
following table. The values and the marginal distribution for the partner’s cost do not change, so the expected
value and standard deviation will not change. The previous values for the mean and standard deviation were
$980 and $9.80.

Partner Costs, Y
Employee costs, X $968 $988 Marg. Dist., X

$968 0.18 0.12 0.30
$1,008 0.15 0.25 0.40
$1,028 0.07 0.23 0.30

Marg. Dist., Y 0.40 0.60 1.00

(b) The expected value and standard deviation of the employee’s costs are calculated as in Example 3.6, but

using the new marginal distribution. The new values for the mean and standard deviation are $1,002 and

$23.75. (c) The expected total cost is $1,002 + $980 = $1,982. (d) The calculation correlation depends on the

standardized costs for each member of the couple and the joint probabilities. The new standardized values for

the employee costs are -1.43, 0.25, and 1.09; the corresponding values for the partner are -1.22 and 0.82. The

correlation is the weighted sum of the 6 products, weighted by the joint probabilities: ρX,Y = 0.29. (e) The

new variance for the total cost will be (23.80)2 + (9.80)2 + (2)(23.8)(9.80)(0.29) = 796.00 The new standard

deviation is
√

796.00 = $28.21.

4 Foundations for inference

4.1 (a) x = 0.6052.

(b) s = 0.0131.

(c) Z0.63 = 0.63−0.6052
0.0131 = 1.893. No, this level of BGC is within 2 SD of the mean.

(d) The standard error of the sample mean is given by s√
n

= 0.0131√
70

= 0.00157.

4.3 (a) This is the sampling distribution of the sample mean.

(b) The sampling distribution will be normal and symmetric, centered around the theoretical population mean

µ of the number of eggs laid by this hen species during a breeding period.

(c) The variability of the distribution is the standard error of the sample mean: s√
n

= 18.2√
45

= 2.71.

(d) The variability of the new distribution will be greater than the variability of the original distribution.

Conceptually, a smaller sample is less informative, which leads to a more uncertain estimate. This can be

shown concretely with a calculation: 18.2√
10

= 5.76 is larger than 2.71.

4.5 (a) We are 95% confident that the mean number of hours that U.S. residents have to relax or pursue

activities that they enjoy is between 3.53 and 3.83 hours.

(b) A larger margin of error with the same sample occurs with a higher confidence level (i.e., larger critical

value).

(c) The margin of error of the new 95% confidence interval will be smaller, since a larger sample size results

in a smaller standard error. (d) A 90% confidence interval will be smaller than the original 95% interval, since

the critical value is smaller and results in a smaller margin of error. The interval will provide a more precise

estimate, but have an associated lower confidence of capturing µ.
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4.7 (a) False. Provided the data distribution is not very strongly skewed (n = 64 in this sample, so we can be

slightly lenient with the skew), the distribution of the sample mean will be nearly normal, allowing for the

normal approximation.

(b) False. Inference is made on the population parameter, not the point estimate. The point estimate is always

in the confidence interval.

(c) True.

(d) False. The confidence interval is not about a sample mean.

(e) False. A wider interval is required to be more confident about capturing the parameter.

(f) True. The margin of error is half the width of the interval, and the sample mean is the midpoint of the

interval.

(g) False. To halve the margin of error requires sampling 22 = 4 times the number of people in the initial

sample.

4.9 (a) i. False. There is a 5% chance that any 95% confidence interval does not contain the true population

mean days out of the past 30 days that U.S. adults experienced poor mental health. ii. False. The population

parameter µ is either inside or outside the interval; there is no probability associated with whether the fixed

value µ is in a certain calculated interval. The randomness is associated with the interval (and the method

for calculating it), not the parameter µ. Thus, it would not be reasonable to say there is a 95% chance that

the particular interval (3.40, 4.24) contains µ; this interpretation is coherent with the statement in part iii. of

this question. iii. True. This is the definition of what it means to be 95% confident. iv. True. The interval

corresponds to a two-sided test, with H0 : µ = 4.5 days and HA : µ , 4.5 days and α = 1 − 0.95 = 0.05. Since

µ0 of 4.5 days is outside the interval, the sample provides sufficient evidence to reject the null hypothesis and

accept the alternative hypothesis. v. False. We can only be confident that 95% of the time, the entire interval

calculated contains µ. It is not possible to make this statement about x or any other point within the interval.

vi. False. The confidence interval is a statement about the population parameter µ, the mean days out of the

past 30 days that all US adults experienced poor mental health. The sample mean x is a known quantity.

(b) The 90% confidence interval will be smaller than the 95% confidence interval. If we are less confident

that an interval contains µ, this implies that the interval is less wide; if we are more confident, the interval is

wider. Think about a theoretical "100%" confidence interval—to be 100% confident of capturing µ, then the

range must be all possible numbers that µ could be. (c) (3.47, 4.17) days

4.11 (a) The null hypothesis is that New Yorkers sleep an average of 8 hours of night (H0 : µ = 8 hours). The

alternative hypothesis is that New Yorkers sleep less than 8 hours a night on average (HA : µ < 8 hours).

(b) The null hypothesis is employees spend on average 15 minutes on non-business activities in a day (H0 :

µ = 15 minutes). The alternative hypothesis is that employees spend on average more than 15 minutes on

non-business activities in a day (HA : µ > 15 minutes).

4.13 Hypotheses are always made about the population parameter µ, not the sample mean x. The correct

value of µ0 is 10 hours, as based on the previous evidence; both hypotheses should include µ0. The correct

hypotheses are H0 : µ = 10 hours and HA : µ > 10 hours.

4.15 (a) This claim is not supported by the confidence interval. 3 hours corresponds to a time of 180 minutes;

there is evidence that the average waiting time is lower than 3 hours.

(b) 2.2 hours corresponds to 132 minutes, which is within the interval. It is plausible that µ is 132 minutes,

since we are 95% confident that the interval (128 minutes, 147 minutes) contains the average wait time.

(c) Yes, the claim would be supported based on a 99% interval, since the 99% interval is wider than the 95%

interval.

4.17 H0 : µ = 130 grams, HA : µ , 130 grams. Test the hypothesis by calculating the test statistic: t = x−µ0
s/
√
n

=
130−134
17/sqrt35 = 1.39. This results in a p-value of 0.17. There is insufficient evidence to reject the null hypothesis.

There is no evidence that the nutrition label does not provide an accurate measure of calories.
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4.19 (a) The 95% confidence interval is 3,150± (1.96× 250/
√

50) = (3080.7,3219.3) grams.

(b) She will conduct a test of the null against the two-sided alternative HA : µ , 3250 grams. Calculate the

test statistic: t = x−µ0
s/
√
n

= 3150−3250
250/
√

50
= −2.83. The p-value is 0.007. There is sufficient evidence to reject the null

hypothesis and conclude that the mean birthweight of babies from inner-city teaching hospitals is lower than

3,260 grams.

4.21 (a) H0: Anti-depressants do not help symptoms of fibromyalgia. HA: Anti- depressants do treat symp-

toms of fibromyalgia. (b) Concluding that anti-depressants work for the treatment of fibromyalgia symptoms

when they actually do not. (c) Concluding that anti-depressants do not work for the treatment of fibromyalgia

symptoms when they actually do. (d) If she makes a Type 1 error, she will continue taking medication that

does not actually treat her disorder. If she makes a Type 2 error, she will stop taking medication that could

treat her disorder.

4.23 (a) The standard error is larger under scenario I; standard error is larger for smaller values of n.

(b) The margin of error is larger under scenario I; to be more confidence of capturing the population parameter

requires a larger confidence interval.

(c) The p-value from a Z-statistic only depends on the value of the Z-statistic; the value is equal under the

scenarios.

(d) The probability of making a Type II error and falsely rejecting the alternative is higher under scenario I; it

is easier to reject the alternative with a high α.

5 Inference for numerical data

5.1 (a) df = 6 − 1 = 5, t?5 = 2.02 (column with two tails of 0.10, row with df = 5). (b) df = 21 − 1 = 20,

t?20 = 2.53 (column with two tails of 0.02, row with df = 20). (c) df = 28, t?28 = 2.05. (d) df = 11, t?11 = 3.11.

5.3 On a z-distribution, the cutoff value for the upper 5% of values is 1.96. A t-distribution has wider tails

than a normal distribution but approaches the shape of a standard normal as degrees of freedom increases.

Thus, 1.98 corresponds to the cutoff for a t-distribution with 100 degrees of freedom, 2.01 the cutoff for 50

degrees of freedom, and 2.23 the cutoff for 10 degrees of freedom.

5.5 The mean is the midpoint: x̄ = 20. Identify the margin of error: ME = 1.015, then use t?35 = 2.03 and

SE = s/
√
n in the formula for margin of error to identify s = 3.

5.7 (a) H0: µ = 8 (New Yorkers sleep 8 hrs per night on average.) HA: µ , 8 (New Yorkers sleep less or more

than 8 hrs per night on average.) (b) Independence: The sample is random. The min/max suggest there are

no concerning outliers. T = −1.75. df = 25−1 = 24. (c) p-value = 0.093. If in fact the true population mean of

the amount New Yorkers sleep per night was 8 hours, the probability of getting a random sample of 25 New

Yorkers where the average amount of sleep is 7.73 hours per night or less (or 8.27 hours or more) is 0.093.

(d) Since p-value > 0.05, do not reject H0. The data do not provide strong evidence that New Yorkers sleep

more or less than 8 hours per night on average. (e) No, since the p-value is smaller than 1− 0.90 = 0.10.

5.9 T is either -2.09 or 2.09. Then x̄ is one of the following:

−2.09 =
x̄ − 60

8√
20

→ x̄ = 56.26

2.09 =
x̄ − 60

8√
20

→ x̄ = 63.74
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5.11 (a) We will conduct a 1-sample t-test. H0: µ = 5. HA: µ , 5. We’ll use α = 0.05. This is a random sample,

so the observations are independent. To proceed, we assume the distribution of years of piano lessons is

approximately normal. SE = 2.2/
√

20 = 0.4919. The test statistic is T = (4.6− 5)/SE = −0.81. df = 20− 1 = 19.

The one-tail area is about 0.21, so the p-value is about 0.42, which is bigger than α = 0.05 and we do not

reject H0. That is, we do not have sufficiently strong evidence to reject the notion that the average is 5 years.

(b) Using SE = 0.4919 and t?df =19 = 2.093, the confidence interval is (3.57, 5.63). We are 95% confident that

the average number of years a child takes piano lessons in this city is 3.57 to 5.63 years. (c) They agree, since

we did not reject the null hypothesis and the null value of 5 was in the t-interval.

5.13 If the sample is large, then the margin of error will be about 1.96 × 100/
√
n. We want this value to be

less than 10, which leads to n ≥ 384.16, meaning we need a sample size of at least 385 (round up for sample

size calculations!).

5.15 (a) Since it’s the same students at the beginning and the end of the semester, there is a pairing between

the datasets; for a given student their beginning and end of semester grades are dependent. (b) Since the

subjects were sampled randomly, each observation in the men’s group does not have a special correspondence

with exactly one observation in the other (women’s) group. (c) Since it’s the same subjects at the beginning

and the end of the study, there is a pairing between the datasets; for a subject their beginning and end of

semester artery thickness are dependent. (d) Since it’s the same subjects at the beginning and the end of the

study, there is a pairing between the datasets; for a subject their beginning and end of semester weights are

dependent.

5.17 (a) For each observation in one data set, there is exactly one specially corresponding observation in the

other data set for the same geographic location. The data are paired. (b) H0 : µdiff = 0 (There is no difference

in average number of days exceeding 90°F in 1948 and 2018 for NOAA stations.) HA : µdiff , 0 (There is a

difference.) (c) Locations were randomly sampled, so independence is reasonable. The sample size is at least

30, so we’re just looking for particularly extreme outliers: none are present (the observation off left in the

histogram would be considered a clear outlier, but not a particularly extreme one). Therefore, the conditions

are satisfied. (d) SE = 17.2/
√

197 = 1.23. T = 2.9−0
1.23 = 2.36 with degrees of freedom df = 197 − 1 = 196. This

leads to a one-tail area of 0.0096 and a p-value of about 0.019. (e) Since the p-value is less than 0.05, we reject

H0. The data provide strong evidence that NOAA stations observed more 90°F days in 2018 than in 1948.

(f) Type 1 Error, since we may have incorrectly rejected H0. This error would mean that NOAA stations did

not actually observe a decrease, but the sample we took just so happened to make it appear that this was the

case. (g) No, since we rejected H0, which had a null value of 0.

5.19 (a) SE = 1.23 and t? = 1.65. 2.9± 1.65× 1.23→ (0.87,4.93).

(b) We are 90% confident that there was an increase of 0.87 to 4.93 in the average number of days that hit 90°F

in 2018 relative to 1948 for NOAA stations.

(c) Yes, since the interval lies entirely above 0.

5.21 (a) Each of the 36 mothers is related to exactly one of the 36 fathers (and vice-versa), so there is a special

correspondence between the mothers and fathers. (b) H0 : µdif f = 0. HA : µdif f , 0. Independence: random

sample from less than 10% of population. Sample size of at least 30. The skew of the differences is, at worst,

slight. Z = 2.72→ p-value = 0.0066. Since p-value < 0.05, rejectH0. The data provide strong evidence that the

average IQ scores of mothers and fathers of gifted children are different, and the data indicate that mothers’

scores are higher than fathers’ scores for the parents of gifted children.
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5.23 (a) Since p < 0.05, there is statistically significant evidence that the population difference in BGC is

not 0. Since the observed mean BGC is higher in the food supplemented group, these data suggest that food

supplemented birds have higher BGC on average than birds that are not food supplemented. (b) The 95%

confidence interval is d ± t? sd√
n

. Since the mean of the differences is equal to the difference of the means,

d = 1.70 − 0.586 = 1.114. The test statistic is t = d
sd /
√
n

, so the standard error (sd /
√
n) can be solved for:

sd /
√
n = d/t = 1.114/2.64 = 0.422. The critical t-value for a 95% confidence interval on a t-distribution with

16−1 = 15 degrees of freedom is 2.13. Thus, the 95% confidence interval is 1.114±(2.13×0.422)→ (0.215,2.01)

grams. With 95% confidence, the interval (0.215, 2.01) grams contains the population mean difference in egg

mass between food supplemented birds and non supplemented birds.

5.25 (a) These data are paired. For example, the Friday the 13th in say, September 1991, would probably be

more similar to the Friday the 6th in September 1991 than to Friday the 6th in another month or year.

(b) Let µdiff = µsixth −µthirteenth. H0 : µdiff = 0. HA : µdiff , 0.

(c) Independence: The months selected are not random. However, if we think these dates are roughly equiv-

alent to a simple random sample of all such Friday 6th/13th date pairs, then independence is reasonable.

To proceed, we must make this strong assumption, though we should note this assumption in any reported

results. Normality: With fewer than 10 observations, we would need to see clear outliers to be concerned.

There is a borderline outlier on the right of the histogram of the differences, so we would want to report this

in formal analysis results.

(d) T = 4.93 for df = 10− 1 = 9→ p-value = 0.001.

(e) Since p-value < 0.05, reject H0. The data provide strong evidence that the average number of cars at the

intersection is higher on Friday the 6th than on Friday the 13th. (We should exercise caution about generaliz-

ing the interpretation to all intersections or roads.)

(f) If the average number of cars passing the intersection actually was the same on Friday the 6th and 13th,

then the probability that we would observe a test statistic so far from zero is less than 0.01.

(g) We might have made a Type 1 Error, i.e. incorrectly rejected the null hypothesis.

5.27 (a) H0 : µdif f = 0. HA : µdif f , 0. T = −2.71. df = 5. p-value = 0.042. Since p-value < 0.05, reject

H0. The data provide strong evidence that the average number of traffic accident related emergency room

admissions are different between Friday the 6th and Friday the 13th. Furthermore, the data indicate that the

direction of that difference is that accidents are lower on Friday the 6th relative to Friday the 13th.

(b) (-6.49, -0.17).

(c) This is an observational study, not an experiment, so we cannot so easily infer a causal intervention implied

by this statement. It is true that there is a difference. However, for example, this does not mean that a

responsible adult going out on Friday the 13th has a higher chance of harm than on any other night.

5.29 (a) Chicken fed linseed weighed an average of 218.75 grams while those fed horsebean weighed an

average of 160.20 grams. Both distributions are relatively symmetric with no apparent outliers. There is more

variability in the weights of chicken fed linseed. (b) H0 : µls = µhb. HA : µls , µhb. We leave the conditions to

you to consider. T = 3.02, df = min(11,9) = 9→ 0.01 < p-value < 0.02. Since p-value < 0.05, reject H0. The

data provide strong evidence that there is a significant difference between the average weights of chickens

that were fed linseed and horsebean. (c) Type 1 Error, since we rejected H0. (d) Yes, since p-value > 0.01, we

would have failed to reject H0.
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5.31 H0 : µC = µS . HA : µC , µS . T = 3.27, df = 11 → p-value < 0.01. Since p-value < 0.05, reject H0.

The data provide strong evidence that the average weight of chickens that were fed casein is different than

the average weight of chickens that were fed soybean (with weights from casein being higher). Since this is a

randomized experiment, the observed difference can be attributed to the diet.

5.33 H0 : µT = µC . HA : µT , µC . T = 2.24, df = 21 → 0.02 < p-value < 0.05. Since p-value < 0.05, reject

H0. The data provide strong evidence that the average food consumption by the patients in the treatment

and control groups are different. Furthermore, the data indicate patients in the distracted eating (treatment)

group consume more food than patients in the control group.

5.35 Let µdif f = µpre −µpost . H0 : µdif f = 0: Treatment has no effect. HA : µdif f , 0: Treatment has an effect

on P.D.T. scores, either positive or negative. Conditions: The subjects are randomly assigned to treatments,

so independence within and between groups is satisfied. All three sample sizes are smaller than 30, so we

look for clear outliers. There is a borderline outlier in the first treatment group. Since it is borderline, we will

proceed, but we should report this caveat with any results. For all three groups: df = 13. T1 = 1.89→ p-value

= 0.081, T2 = 1.35→ p-value = 0.200), T3 = −1.40→ (p-value = 0.185). We do not reject the null hypothesis

for any of these groups. As earlier noted, there is some uncertainty about if the method applied is reasonable

for the first group.

5.37 Difference we care about: 40. Single tail of 90%: 1.28× SE. Rejection region bounds: ±1.96× SE (if 5%

significance level). Setting 3.24×SE = 40, subbing in SE =
√

942
n + 942

n , and solving for the sample size n gives

116 plots of land for each fertilizer.

5.39 H0: µ1 = µ2 = · · · = µ6. HA: The average weight varies across some (or all) groups. Independence: Chicks

are randomly assigned to feed types (presumably kept separate from one another), therefore independence of

observations is reasonable. Approx. normal: the distributions of weights within each feed type appear to be

fairly symmetric. Constant variance: Based on the side-by-side box plots, the constant variance assumption

appears to be reasonable. There are differences in the actual computed standard deviations, but these might

be due to chance as these are quite small samples. F5,65 = 15.36 and the p-value is approximately 0. With

such a small p-value, we reject H0. The data provide convincing evidence that the average weight of chicks

varies across some (or all) feed supplement groups.

5.41 (a) H0: The population mean of MET for each group is equal to the others. HA: At least one pair of
means is different. (b) Independence: We don’t have any information on how the data were collected, so we
cannot assess independence. To proceed, we must assume the subjects in each group are independent. In
practice, we would inquire for more details. Normality: The data are bound below by zero and the standard
deviations are larger than the means, indicating very strong skew. However, since the sample sizes are ex-
tremely large, even extreme skew is acceptable. Constant variance: This condition is sufficiently met, as the
standard deviations are reasonably consistent across groups. (c) See below, with the last column omitted:

Df Sum Sq Mean Sq F value

coffee 4 10508 2627 5.2
Residuals 50734 25564819 504
Total 50738 25575327

(d) Since p-value is very small, reject H0. The data provide convincing evidence that the average MET differs

between at least one pair of groups.

5.43 (a) H0: Average GPA is the same for all majors. HA: At least one pair of means are different. (b) Since

p-value > 0.05, fail to reject H0. The data do not provide convincing evidence of a difference between the

average GPAs across three groups of majors. (c) The total degrees of freedom is 195 + 2 = 197, so the sample

size is 197 + 1 = 198.
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5.45 (a) False. As the number of groups increases, so does the number of comparisons and hence the modified

significance level decreases. (b) True. (c) True. (d) False. We need observations to be independent regardless

of sample size.

5.47 (a) H0: Average score difference is the same for all treatments. HA: At least one pair of means are

different. (b) We should check conditions. If we look back to the earlier exercise, we will see that the patients

were randomized, so independence is satisfied. There are some minor concerns about skew, especially with

the third group, though this may be acceptable. The standard deviations across the groups are reasonably

similar. Since the p-value is less than 0.05, reject H0. The data provide convincing evidence of a difference

between the average reduction in score among treatments. (c) We determined that at least two means are

different in part (b), so we now conduct K = 3×2/2 = 3 pairwise t-tests that each use α = 0.05/3 = 0.0167 for a

significance level. Use the following hypotheses for each pairwise test. H0: The two means are equal. HA: The

two means are different. The sample sizes are equal and we use the pooled SD, so we can compute SE = 3.7

with the pooled df = 39. The p-value for Trmt 1 vs. Trmt 3 is the only one under 0.05: p-value = 0.035 (or

0.024 if using spooled in place of s1 and s3, though this won’t affect the final conclusion). The p-value is larger

than 0.05/3 = 1.67, so we do not have strong evidence to conclude that it is this particular pair of groups that

are different. That is, we cannot identify if which particular pair of groups are actually different, even though

we’ve rejected the notion that they are all the same!

6 Simple linear regression

6.1 (a) Strong relationship, but a straight line would not fit the data. (b) Strong relationship, and a linear

fit would be reasonable. (c) Weak relationship, and trying a linear fit would be reasonable. (d) Moderate

relationship, but a straight line would not fit the data. (e) Strong relationship, and a linear fit would be

reasonable. (f) Weak relationship, and trying a linear fit would be reasonable.

6.3 (a) There is a moderate, positive, and linear relationship between shoulder girth and height. (b) Changing

the units, even if just for one of the variables, will not change the form, direction or strength of the relationship

between the two variables.

6.5 Over-estimate. Since the residual is calculated as observed − predicted, a negative residual means that

the predicted value is higher than the observed value.

6.7 (a) �murder = −29.901+2.559×poverty%. (b) Expected murder rate in metropolitan areas with no poverty

is -29. 901 per million. This is obviously not a meaningful value, it just serves to adjust the height of the

regression line. (c) For each additional percentage increase in poverty, we expect murders per million to be

higher on average by 2.559. (e)
√

0.7052 = 0.8398.

6.9 (a) The slope of -1.26 indicates that on average, an increase in age of 1 year is associated with a lower

RFFT score by 1.26 points. The intercept of 137.55 represents the predicted mean RFFT score for an individual

of age 0 years; this does not have interpretive meaning since the RFFT cannot be reasonably administered to a

newborn. (b) RFFT score differs on average by 10(−1.26) = 12.6 points between an individual who is 60 years

old versus 50 years old, with the older individual having the lower score. (c) According to the model, average

RFFT score for a 70-year-old is 137.55− 1.26(70) = 49.3 points. (d) No, it is not valid to use the linear model

to estimate RFFT score for a 20-year-old. As indicated in the plot, data are only available for individuals as

young as about 40 years old.

6.11 (a) The residual plot will show randomly distributed residuals around 0. The variance is also approxi-

mately constant. (b) The residuals will show a fan shape, with higher variability for smaller x. There will also

be many points on the right above the line. There is trouble with the model being fit here.
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6.13 (a) The points with the lowest and highest values for height have relatively high leverage. They do not

seem particularly influential because they are not outliers; the one with a low x-value has a low y-value and

the one with a high x-value has a high y-value, which follows the positive trend visible in the data. (b) Yes,

since the data show a linear trend, it is appropriate to use R2 as a metric for describing the strength of the

model fit. (c) Height explains about 72% of the observed variability in length.

6.15 There is an upwards trend. However, the variability is higher for higher calorie counts, and it looks like

there might be two clusters of observations above and below the line on the right, so we should be cautious

about fitting a linear model to these data.

6.17 (a) There is an outlier in the bottom right. Since it is far from the center of the data, it is a point with

high leverage. It is also an influential point since, without that observation, the regression line would have a

very different slope.

(b) There is an outlier in the bottom right. Since it is far from the center of the data, it is a point with high

leverage. However, it does not appear to be affecting the line much, so it is not an influential point.

(c) The observation is in the center of the data (in the x-axis direction), so this point does not have high

leverage. This means the point won’t have much effect on the slope of the line and so is not an influential

point.

6.19 (a) Linearity is satisfied; the data scatter about the horizontal line with no apparent pattern. The vari-

ability seems constant across the predicted length values. (b) The fish were randomly sampled from a river, so

without additional details about the life cycle of the fish, it seems reasonable to assume the height and length

of any one fish does not provide information about the height and length of another fish. This could be vio-

lated, if, for example, the fish in a river tend to be closely related and height and length are highly heritable.

(c) The residuals are approximately normally distributed, with some small deviations from normality in the

tails. There are more outliers in both tails than expected under a normal distribution.

6.21 One possible equation is �price = 44.51 + 12.3(carat1.00), where the explanatory variable is a binary

variable taking on value 1 if the diamond is 1 carat.

6.23 (a) The relationship is positive, moderate-to-strong, and linear. There are a few outliers but no points

that appear to be influential.

(b) �weight = −105.0113 + 1.0176× height.
Slope: For each additional centimeter in height, the model predicts the average weight to be 1.0176 additional

kilograms (about 2.2 pounds).

Intercept: People who are 0 centimeters tall are expected to weigh - 105.0113 kilograms. This is obviously not

possible. Here, the y- intercept serves only to adjust the height of the line and is meaningless by itself.

(c) H0: The true slope coefficient of height is zero (β1 = 0).

HA: The true slope coefficient of height is different than zero (β1 , 0).

The p-value for the two-sided alternative hypothesis (β1 , 0) is incredibly small, so we reject H0. The data

provide convincing evidence that height and weight are positively correlated. The true slope parameter is

indeed greater than 0.

(d) R2 = 0.722 = 0.52. Approximately 52% of the variability in weight can be explained by the height of

individuals.
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6.25 (a) H0: β1 = 0. HA: β1 , 0. The p-value, as reported in the table, is incredibly small and is smaller than

0.05, so we reject H0. The data provide convincing evidence that wives’ and husbands’ heights are positively

correlated.

(b) �heightW = 43.5755 + 0.2863× heightH .

(c) Slope: For each additional inch in husband’s height, the average wife’s height is expected to be an additional

0.2863 inches on average. Intercept: Men who are 0 inches tall are expected to have wives who are, on average,

43.5755 inches tall. The intercept here is meaningless, and it serves only to adjust the height of the line.

(d) The slope is positive, so r must also be positive. r =
√

0.09 = 0.30.

(e) 63.33. Since R2 is low, the prediction based on this regression model is not very reliable.

(f) No, we should avoid extrapolating.

(g) Yes, the p-value for the slope parameter is less than α = 0.05. There is sufficient evidence to accept the

alternative hypothesis, HA : β1 , 0. These data suggest that wife height and husband height are positively

associated at the population level.

(h) No, a 95% confidence interval for β1 would not be expected to contain the null value 0, since the p-value

is less than 0.05.

6.27 (a) The point estimate and standard error are b1 = 0.9112 and SE = 0.0259. We can compute a T-

score: T = (0.9112 − 1)/0.0259 = −3.43. Using df = 168, the p-value is about 0.001, which is less than α =

0.05. That is, the data provide strong evidence that the average difference between husbands’ and wives’

ages has actually changed over time. (b) âgeW = 1.5740 + 0.9112 × ageH . (c) Slope: For each additional year

in husband’s age, the model predicts an additional 0.9112 years in wife’s age. This means that wives’ ages

tend to be lower for later ages, suggesting the average gap of husband and wife age is larger for older people.

Intercept: Men who are 0 years old are expected to have wives who are on average 1.5740 years old. The

intercept here is meaningless and serves only to adjust the height of the line. (d) R =
√

0.88 = 0.94. The

regression of wives’ ages on husbands’ ages has a positive slope, so the correlation coefficient will be positive.

(e) âgeW = 1.5740 + 0.9112 × 55 = 51.69. Since R2 is pretty high, the prediction based on this regression

model is reliable. (f) No, we shouldn’t use the same model to predict an 85 year old man’s wife’s age. This

would require extrapolation. The scatterplot from an earlier exercise shows that husbands in this data set are

approximately 20 to 65 years old. The regression model may not be reasonable outside of this range.

6.29 (a) Yes, since p < 0.01. H0 : β1 = 0, HA : β1 , 0, where β1 represents the population average change

in RFFT score associated with a change in 1 year of age. There is statistically significant evidence that age is

negatively associated with RFFT score. (b) With 99% confidence, the interval (-1.49, -1.03) points contains

the population average difference in RFFT score between individuals who differ in age by 1 year; the older

individual is predicted to have a lower RFFT score.

6.31 (a) First, compute the standard error: s.e.( �E(agewif e |agehusband = 55)) = 3.95

√
1

170 + (55−42.92)2

(170−1)11.762 =

0.435. The critical value is t?0.975,df =169 = 1.97. Thus, the 95% confidence interval is 51.69 ± (1.97)(0.435) =

(50.83,52.55) years. (b) First, compute the standard error: s.e.( �agewif e |agehusband = 55) = 3.95

√
1 + 1

170 + (55−42.92)2

(170−1)11.762 =

3.97. The 95% prediction interval is 51.69 ± (1.97)(3.97) = (43.85,59.54) years. (c) For the approximate 95%

confidence interval, use s/
√
n = 3.95/

√
170 = 0.303 as the approximate standard error: (51.09,52.29) years. For

the approximate 95% prediction interval, use s
√

1 + 1/n = 3.95
√

1 + 1/170 = 4.25 as the approximate standard

error: (43.30,60.09) years.
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7 Multiple linear regression

7.1 Although the use of statins appeared to be associated with lower RFFT score when no adjustment was

made for possible confounders, statin use is not significantly associated with RFFT score in a model that

adjusts for age. After adjusting for age, the estimated difference in mean RFFT score between statin users and

non-users is 0.85 points; there is a 74% chance of observing such a difference if there is no difference between

mean RFFT score in the population of statin users and non-users.

7.3 (a) �baby_weight = 123.57 − 8.96(smoke) − 1.98(parity) (b) A child born to a mother who smokes has a

birth weight about 9 ounces less, on average, than one born to a mother who does not smoke, holding birth

order constant. A child who is the first born has birth weight about 2 ounces less, on average, than one who is

not first born, when comparing children whose mothers were either both smokers or both nonsmokers. The

intercept represents the predicted mean birth weight for a child whose mother is not a smoker and who was

not the first born. (c) The estimated difference in mean birth weight for two infants born to non-smoking

mothers, where one is first born and the other is not, is -1.98. (d) This is the same value as in part (c).

(e) 123.57− 8.96(0)− 1.98(1) = 121.59 ounces.

7.5 (a) �baby_weight = −80.41 + 0.44 × gestation − 3.33 × parity − 0.01 × age + 1.15 × height + 0.05 ×weight −
8.40× smoke. (b) βgestation: The model predicts a 0.44 ounce increase in the birth weight of the baby for each

additional day of pregnancy, all else held constant. βage: The model predicts a 0.01 ounce decrease in the birth

weight of the baby for each additional year in mother’s age, all else held constant. (c) Parity might be correlated

with one of the other variables in the model, which complicates model estimation. (d) �baby_weight = 120.58.

e = 120− 120.58 = −0.58. The model over-predicts this baby’s birth weight. (e) R2 = 0.2504. R2
adj = 0.2468.

7.7 Nearly normal residuals: With so many observations in the data set, we look for particularly extreme

outliers in the histogram and do not see any. Variability of residuals: The scatterplot of the residuals versus

the fitted values does not show any overall structure. However, values that have very low or very high fitted

values appear to also have somewhat larger outliers. In addition, the residuals do appear to have constant

variability between the two parity and smoking status groups, though these items are relatively minor.

Independent residuals: The scatterplot of residuals versus the order of data collection shows a random scatter,

suggesting that there is no apparent structures related to the order the data were collected.

Linear relationships between the response variable and numerical explanatory variables: The residuals vs.

height and weight of mother are randomly distributed around 0. The residuals vs. length of gestation plot

also does not show any clear or strong remaining structures, with the possible exception of very short or long

gestations. The rest of the residuals do appear to be randomly distributed around 0.

All concerns raised here are relatively mild. There are some outliers, but there is so much data that the

influence of such observations will be minor.

7.9 (b) True. (c) False. This would only be the case if the data was from an experiment and x1 was one of

the variables set by the researchers. (Multiple regression can be useful for forming hypotheses about causal

relationships, but it offers zero guarantees.) (d) False. We should check normality like we would for inference

for a single mean: we look for particularly extreme outliers if n ≥ 30 or for clear outliers if n < 30.
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7.11 (a) (-0.32, 0.16). We are 95% confident that male students on average have GPAs 0.32 points lower

to 0.16 points higher than females when controlling for the other variables in the model. (b) Yes, since the

p-value is larger than 0.05 in all cases (not including the intercept).

7.13 (a) �eggs.laid = −17.88 + 4.28(wolbachia) + 0.272(tibia) (b) An increase in Wolbachia density of one unit

is associated with on average 4.28 more eggs laid over a lifetime, assuming body size is held constant. (c) In a

multiple regression model adjusting for body size as a potential confounder, increase in Wolbachia density was

significantly positively associated with realized fitness, measured as the number of eggs laid over a female’s

full lifetime (p = 0.002). These data are consistent with the scientific hypothesis that Wolbachia is beneficial

for its host in nature. (d) (1.85,7.05) eggs (e) As a group, the predictors Wolbachia density and tibia length are

useful for predicting the number of eggs laid over a lifetime.

7.15 (a) Since the difference is taken in the direction (pre - post), a positive value for trt.effect indicates

that the post-intervention score is lower than the pre-intervention score, which represents efficacy of the

intervention. A negative value would represent a patient’s deviant T scores increasing after the interven-

tion. (b) Let Y be the change in MMPI score for a participant in this study, Xneutral a variable with value

1 for participants assigned to the neutral tape and 0 otherwise, and Xtherapeutic a variable with value 1

for participants in the emotional neutral group and 0 otherwise. The population-level equation is E(Y ) =

β0 + βneutralXneutral + βtherapeuticXtherapeutic. For these data, the estimated model equation is ŷ = −3.21 +

6.07Xneutral + 9.43Xtherapeutic. (c) The predicted difference scores ŷ for a patient receiving the neutral tape

will be ŷ = b0 + bneutralXneutral + btherapeuticXtherapeutic = −3.21 + 6.07 + 0 = 2.86. (d) Yes. The intercept is the

average of the score difference for the group that did not hear a taped message. (e) The two slopes represent

the change in average MMPI score difference from the average for the group that did not receive a tape. The

Absent category is the reference group. (f) The p−value for the intercept corresponds to a test of the null

hypothesis that the average difference score was 0 in the group that did not hear a taped message. The slope

p-values correspond to tests of the null hypotheses of (on average) no change in difference scores between the

intervention with no tape and each of the other two interventions.

7.17 (a) Let pre and post denote the pre- and post-intervention scores, respectively. The estimated equation

for the model is p̂ost = 28.41 + 0.66(pre) − 5.73Xneutral − 9.75Xtherapeutic. (b) Since the coefficient of the pre-

intervention score is positive, post-intervention scores tend to increase as the pre-intervention score increases.

(c) Yes. The t-statistic for the coefficient of pre is 4.05 and is statistically significant. (d) In this model,

treatment is a factor variable with three levels and the intervention with no tape is the baseline treatment

that does not appear in the model. For a participant with pre = 70 and no tape, the predicted value of post

is 28.41 + 0.66(73) − 5.73(1) = 70.86 (e) For a given value of pre, the coefficient of treatmentNeutral is the

predicted change in post between an participant without a tape and one with the emotionally neutral tape.

The model implies that post will be 5.7 points lower with the emotionally neutral tape. The evidence for

a treatment effect of the emotionally neutral tape is weak; the coefficient is not statistically significant at

α = 0.05.
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7.19 (a) p̂ost = −17.58+1.28(pre)+67.75(neutral)+64.42(therapeutic)−0.99(pre×neutral)−1.01(pre×therapeutic)
(b) The coefficient for pre is the predicted increase in post score associated with a 1 unit increase in pre-score

for individuals in the absent arm, while the coefficients of the interaction terms for neutral and therapeutic

represent the difference in association between pre and post scores for individuals in those groups. For exam-

ple, an individual in the neutral group is expected to have a 1.28 − 0.99 = 0.29 point increase in post score,

on average, per 1 point increase in pre-score. The coefficients of the slopes for neutral and therapeutic are

differences in intercept values relative to the intercept for the model, which is for the baseline group (absent).

(c) Absent: p̂ost = −17.58 + 1.28(pre) Neutral: p̂ost = −17.58 + 67.75 + 1.28(pre)− 0.99(pre) = 50.17 + 0.29(pre)

Therapeutic: p̂ost = −17.58 + 64.42 + 1.28(pre)− 1.01(pre) = 46.84 + 0.27(pre) (d) These data suggest there is a

statistically significant difference in association between pre- and post-intervention scores by treatment group

relative to the group that did not receive any treatment. The coefficients of both interaction terms are statis-

tically significant at α = 0.05. Since the slopes are smaller than the slope for the treatment absent group, the

data demonstrate that individuals in either treatment group show less increase in MMPI score than occurs

when no treatment is applied.

7.21 (a) �RFFT = 140.20−13.97(Statin)−1.31(Age)+0.25(Statin×Age) (b) The model intercept represents the

predicted mean RFFT score for a statin non-user of age 0 years; the intercept does not have a meaningful in-

terpretation. The slope coefficient for age represents the predicted change in RFFT score for a statin non-user;

for non-users, a one year increase in age is associated with a 1.32 decrease in RFFT score. The slope coefficient

for statin use represents the difference in intercept between the regression line for users and the regression

line for non-users; the intercept for users is -13.97 points lower than that of non-users. The interaction term

coefficient represents the difference in the magnitude of association between RFFT score and age between

users and non-users; in users, the slope coefficient representing predicted change in RFFT score per 1 year

change in age is higher by 0.25 points. (c) No, there is not evidence that the association between RFFT score

and age differs by statin use. The p-value of the interaction coefficient is 0.32, which is higher than α = 0.05.

7.23 Age should be the first variable removed from the model. It has the highest p-value, and its removal

results in an adjusted R2 of 0.255, which is higher than the current adjusted R2.

7.25 (a) The strongest predictor of birth weight appears to be gestational age; these two variables show a

strong positive association. Both parity and smoker status show a slight association with gestational age; the

first born child tends to be a lower birth weight and children from mothers who smoke tend to have lower birth

weight. While there does not appear to be an association between birth weight and age of the mother, there

may be a slight positive association between both birth weight and height and birth weight and weight. All

predictor variables with exception of age seem potentially useful for inclusion in an initial model. (b) Height

and weight appear to be positively associated.

7.27 (a) The F-statistic for the model corresponds to a test of H0 : βneutral = βtherapeutic = 0. (b) The inter-

cept coefficient is the estimated mean difference score for the no intervention group, and the estimated mean

difference score for the other two groups can be calculated by adding each of the slope estimates to the inter-

cept. (c) Under the null hypothesis that the two slope coefficients are 0, all three interventions would have

the same mean difference in MMPI scores. This is the same as the null hypothesis for an ANOVA with three

groups (H0 : µ1 = µ2 = µ3), which states that all three population means are the same. (d) The assumptions for

multiple regression and ANOVA are outlined in Sections 7.3.1 and 5.5, respectively. The assumptions for the

two models are the same, though they may be phrased differently. The first assumption in multiple regression

is linear change of the mean response variable when one predictor changes and the others do not change.

Since each of the two predictor variables in this model can only change from 0 to 1, this assumption is simply

that the means in the three groups are possibly different, which is true in ANOVA. The second assumption in

regression is that the variance of the residuals is approximately constant. Since the predicted response for an

intervention group is its mean, the constant variance assumption in regression is the equivalent assumption

in ANOVA that the three groups have approximately constant variance. Both models assume that the obser-

vations are independent and that the residuals follow a normal distribution. This is a very long way of saying

that the two models are identical!
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8 Inference for categorical data

8.1 (a) False. Doesn’t satisfy success-failure condition. (b) True. The success-failure condition is not satisfied.

In most samples we would expect p̂ to be close to 0.08, the true population proportion. While p̂ can be much

above 0.08, it is bound below by 0, suggesting it would take on a right skewed shape. Plotting the sampling

distribution would confirm this suspicion. (c) False. SEp̂ = 0.0243, and p̂ = 0.12 is only 0.12−0.08
0.0243 = 1.65 SEs

away from the mean, which would not be considered unusual. (d) True. p̂ = 0.12 is 2.32 standard errors away

from the mean, which is often considered unusual. (e) False. Decreases the SE by a factor of 1/
√

2.

8.3 (a) False. A confidence interval is constructed to estimate the population proportion, not the sample

proportion. (b) True. 95% CI: 82% ± 2%. (c) True. By the definition of the confidence level. (d) True.

Quadrupling the sample size decreases the SE and ME by a factor of 1/
√

4. (e) True. The 95% CI is entirely

above 50%.

8.5 With a random sample, independence is satisfied. The success-failure condition is also satisfied. ME =

z?
√
p̂(1−p̂)
n = 1.96

√
0.56×0.44

600 = 0.0397 ≈ 4%

8.7 (a) No. The sample only represents students who took the SAT, and this was also an online survey.

(b) (0.5289, 0.5711). We are 90% confident that 53% to 57% of high school seniors who took the SAT are fairly

certain that they will participate in a study abroad program in college. (c) 90% of such random samples would

produce a 90% confidence interval that includes the true proportion. (d) Yes. The interval lies entirely above

50%.

8.9 (a) We want to check for a majority (or minority), so we use the following hypotheses:

H0 : p = 0.5 HA : p , 0.5

We have a sample proportion of p̂ = 0.55 and a sample size of n = 617 independents.
Since this is a random sample, independence is satisfied. The success-failure condition is also satisfied: 617×
0.5 and 617×(1−0.5) are both at least 10 (we use the null proportion p0 = 0.5 for this check in a one-proportion
hypothesis test).
Therefore, we can model p̂ using a normal distribution with a standard error of

SE =

√
p(1− p)
n

= 0.02

(We use the null proportion p0 = 0.5 to compute the standard error for a one-proportion hypothesis test.)
Next, we compute the test statistic:

Z =
0.55− 0.5

0.02
= 2.5

This yields a one-tail area of 0.0062, and a p-value of 2× 0.0062 = 0.0124.

Because the p-value is smaller than 0.05, we reject the null hypothesis. We have strong evidence that the

support is different from 0.5, and since the data provide a point estimate above 0.5, we have strong evidence

to support this claim by the TV pundit.

(b) No. Generally we expect a hypothesis test and a confidence interval to align, so we would expect the

confidence interval to show a range of plausible values entirely above 0.5. However, if the confidence level

is misaligned (e.g. a 99% confidence level and a α = 0.05 significance level), then this is no longer generally

true.
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8.11 Since a sample proportion (p̂ = 0.55) is available, we use this for the sample size calculations. The

margin of error for a 90% confidence interval is 1.65× SE = 1.65×
√
p(1−p)
n . We want this to be less than 0.01,

where we use p̂ in place of p:

1.65×
√

0.55(1− 0.55)
n

≤ 0.01

1.652 0.55(1− 0.55)
0.012 ≤ n

From this, we get that n must be at least 6739.

8.13 (a) H0 : p = 0.5. HA : p , 0.5. Independence (random sample) is satisfied, as is the success-failure

conditions (using p0 = 0.5, we expect 40 successes and 40 failures). Z = 2.91 → the one tail area is 0.0018,

so the p-value is 0.0036. Since the p-value < 0.05, we reject the null hypothesis. Since we rejected H0 and

the point estimate suggests people are better than random guessing, we can conclude the rate of correctly

identifying a soda for these people is significantly better than just by random guessing. (b) If in fact people

cannot tell the difference between diet and regular soda and they were randomly guessing, the probability of

getting a random sample of 80 people where 53 or more identify a soda correctly (or 53 or more identify a

soda incorrectly) would be 0.0036.

8.15 (a) Yes, it is reasonable to use the normal approximation to the binomial distribution. The sam-

ple observations are independent and the expected numbers of successes and failures are greater than 10:

np̂ = (100)(.15) = 15 and n(1 − p̂) = (100)(0.85) = 85. (b) An approximate 95% confidence interval is p̂ ±

1.96
√
p̂(1−p̂)
n → (0.08,0.22). (c) The interval does not support the claim. Since the interval does not contain

0.05, there is statistically significant evidence at α = 0.05 that the proportion of young women in the neighbor-

hood who use birth control is different than 0.05. The interval is above 0.05, which is indicative of evidence

that more than 5% of young women in the neighborhood use birth control.

8.17 This is not a randomized experiment, and it is unclear whether people would be affected by the behavior

of their peers. That is, independence may not hold. Additionally, there are only 5 interventions under the

provocative scenario, so the success-failure condition does not hold. Even if we consider a hypothesis test

where we pool the proportions, the success-failure condition will not be satisfied. Since one condition is

questionable and the other is not satisfied, the difference in sample proportions will not follow a nearly normal

distribution.

8.19 (a) Standard error:

SE =

√
0.79(1− 0.79)

347
+

0.55(1− 0.55)
617

= 0.03

Using z? = 1.96, we get:

0.79− 0.55± 1.96× 0.03→ (0.181,0.299)

We are 95% confident that the proportion of Democrats who support the plan is 18.1% to 29.9% higher than

the proportion of Independents who support the plan. (b) True.
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8.21 (a) Test H0 : p1 = p2 against HA : p1 , p2, where p1 represents the population proportion of clinical

improvement in COVID-19 patients treated with remdesivir and p2 represents the population proportion of

clinical improvement in COVID-19 patients treated with placebo. Let α = 0.05. The p-value is 0.328, which

is greater than α; there is insufficient evidence to reject the null hypothesis of no difference. Even though

the proportion of patients who experienced clinical improvement about 7% higher in the remdesivir group,

this difference is not extreme enough to represent sufficient evidence that remdesivir is more effective than

placebo. (b) The 95% confidence interval is (-0.067, 0.217); with 95% confidence, this interval captures the

difference in population proportion of clinical mortality between COVID-19 patients treated with remdesivir

and those treated with placebo. The interval contains 0, which is consistent with no statistically significant ev-

idence of a difference. The interval reflects the lack of precision around the effect estimate that is characteristic

of an insufficiently large sample size.

8.23 (a) False. The entire confidence interval is above 0. (b) True. (c) True. (d) True. (e) False. It is simply the

negated and reordered values: (-0.06,-0.02).

8.25 Subscript C means control group. Subscript T means truck drivers. H0 : pC = pT . HA : pC , pT .

Independence is satisfied (random samples), as is the success-failure condition, which we would check using

the pooled proportion (p̂pool = 70/495 = 0.141). Z = −1.65 → p-value = 0.0989. Since the p-value is high

(default to alpha = 0.05), we fail to reject H0. The data do not provide strong evidence that the rates of sleep

deprivation are different for non-transportation workers and truck drivers.

8.27 (a) False. The chi-square distribution has one parameter called degrees of freedom. (b) True. (c) True.

(d) False. As the degrees of freedom increases, the shape of the chi-square distribution becomes more symmetric.

8.29 (a) Two-way table:

Quit
Treatment Yes No Total
Patch + support group 40 110 150
Only patch 30 120 150
Total 70 230 300

(b-i) Erow1,col1 = (row 1 total)×(col 1 total)
table total = 35. This is lower than the observed value.

(b-ii) Erow2,col2 = (row 2 total)×(col 2 total)
table total = 115. This is lower than the observed value.

8.31 (a) H0: There is no association between statin use and educational level. HA: There is an association

between statin use and educational level

(b) It is reasonable to assume the counts are independent. The smallest expected value in the table is 39.27,

so the success-failure condition is reasonably met. (c) There is statistically significant evidence at α = 0.05 of

an association between educational level and statin use. Individuals with a higher educational level are less

likely to be statin users.

8.33 (a)

No Default Default Sum
Non-Diabetic 1053 127 1180

Diabetic 54 0 54
Sum 1107 127 1234

(b) H0 : p1 = p2 versus HA : p1 , p2, where p1 represents the population proportion of treatment default

in diabetics and p2 represents the population proportion of treatment default in non-diabetics. (c) It is

reasonable to assume the counts are independent. The smallest expected value is 5.56, which is not smaller

than 5. (d) The χ2 test statistic is 5.37, with 1 degree of freedom. The p-value of the test statistic is 0.02. There

is sufficient evidence to conclude that the proportion of treatment default is higher in non-diabetics than in

diabetics.
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8.35 (a) One possible 2× 2 contingency table:
Mosquito Nets

No Yes Total
Malaria 30 22 52
No Malaria 70 78 148
Total 100 100 200

(b) Expected number of infected children among 100 families who did receive a net:
52× 100

200
= 26.

(c) The null hypothesis is H0 : Using a mosquito net and being infected with malaria are not associated.
The alternative is HA : using a net and being infected with malaria are associated. The χ2 statistic (1.66) has
1 degree of freedom and the table A3 can be used to show that p > 0.10. There is not statistically significant
evidence of an association between malaria infection and use of a net in children.

(d) Because this is a prospective study, the relative risk can be calculated directly from the table. Let

pNo Nets be the probability that a child without a net will be infected with malaria: p̂No Nets = 30
100 = 0.30.

Let pNets be the probability that a child with a net will be infected with malaria: p̂Nets = 22
100 = 0.22. The

estimated relative risk: R̂R = p̂No Nets
p̂Nets

= 0.30
0.22 = 1.36. The risk of malaria infection for children in the control

group is 36% higher than risk for children in the treatment group.

8.37 (a) Under the null hypothesis of no association, the expected cell counts are 9.07 and 7.93 in the wait
together and wait alone groups, respectively, for those considered "high anxiety" and 6.93 and 6.07 in the wait
together and wait alone groups, respectively, for those considered "low anxiety". (b) Use the hypergeometric
distribution with parameters N = 30, m = 16, and n = 17; calculate P (X = 12). Consider the "successes" to
be the individuals who wait together, and the "number sampled" to be the people randomized to the high-
anxiety group. The probability of the observed set of results, assuming the marginal totals are fixed and the
null hypothesis is true, is 0.0304. (c) More individuals than expected in the high-anxiety group were observed
to wait together; thus, tables that are more extreme in the same direction also consist of those where more
people in the high-anxiety group wait together than observed. These are tables in which 13, 14, 15, or 16
individuals in the high-anxiety group wait together.

Wait Together Wait Alone Sum
High-Anxiety 13 4 17
Low-Anxiety 3 10 13

Sum 16 14 30

Wait Together Wait Alone Sum
High-Anxiety 14 3 17
Low-Anxiety 2 11 13

Sum 16 14 30

Wait Together Wait Alone Sum
High-Anxiety 15 2 17
Low-Anxiety 1 12 13

Sum 16 14 30

Wait Together Wait Alone Sum
High-Anxiety 16 1 17
Low-Anxiety 0 13 13

Sum 16 14 30

(d) Let p1 represent the population proportion of individuals waiting together in the high-anxiety group

and p2 represent the population proportion of individuals waiting together in the low-anxiety group. Test

H0 : p1 = p2 against HA : p1 , p2. Let α = 0.05. The two-sided p-value is 0.063. There is insufficient evidence

to reject the null hypothesis; the data do not suggest there is an association between high anxiety and a person’s

desire to be in the company of others.
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8.39 (a) H0: The distribution of the format of the book used by the students follows the professor’s predic-

tions. HA: The distribution of the format of the book used by the students does not follow the professor’s

predictions. (b) Ehard copy = 126 × 0.60 = 75.6. Eprint = 126 × 0.25 = 31.5. Eonline = 126 × 0.15 = 18.9. (c) In-

dependence: The sample is not random. However, if the professor has reason to believe that the proportions

are stable from one term to the next and students are not affecting each other’s study habits, independence is

probably reasonable. Sample size: All expected counts are at least 5. (d) χ2 = 2.32, df = 2, p-value = 0.313.

(e) Since the p-value is large, we fail to reject H0. The data do not provide strong evidence indicating the

professor’s predictions were statistically inaccurate.

8.41 (a)

CVD No CVD
Age Onset ≤ 50 Years 15 25
Age Onset > 50 Years 5 55

(b) The odds of CVD for patients older than 50 years when diagnosed with diabetes is 5/55 = 0.09. The
odds of CVD for the patients younger than 50 years at diabetes onset is 15/25 = 0.60. The relative odds (or
odds ratio, OR) is 0.09/0.60 = 0.15.

(c) The odds of CVD for someone with late onset diabetes is less than 1/5 that of people with earlier
onset diabetes. This can be explained by the fact that people with diabetes tend to build up plaque in their
arteries; with early onset diabetes, plaque has longer time to accumulate, eventually causing CVD.

(d) H0 :OR = 1.
(e) The chi-square test can be used to test H0 as long as the conditions for the test have been met. The

observations are likely independent; knowing one person’s age of diabetes onset and CVD status is unlikely
to provide information about another person’s age of diabetes onset and CVD status. Under H0, the expected
cell count for the lower left cell is (60)(20)/100 = 12, which is bigger than 5; all other expected cell counts will
be larger.

(f) Since the study is not a randomized experiment, it cannot demonstrate causality. It may be the case,

for example, that CVD presence causes earlier onset of diabetes. The study only demonstrates an association

between cardiovascular disease and diabetes.

8.43 (a) No. This is an example of outcome dependent sampling. Subjects were first identified according to
presence or absence of the CNS disorder, then queried about use of the drug. It is only possible to estimate
the probability that someone had used the drug, given they either did or did not have a CNS disorder.

(b) The appropriate measure of association is the odds ratio.
(c) The easiest way of calculating the OR for the table is the cross-product of the diagonal elements of

the table: [(10)(4000)] / [(2000)(7)] = 2.86. Using the definition, it can be calculated as:

ÔR =

P̂ (CNS| Usage)
1−P̂ (CNS| Usage)

P̂ (CNS| No Usage)
1−P̂ (CNS| No Usage)

=
ad
bc

=
(10)(4000)
(2000)(7)

= 2.86

(d) The odds ratio has the interpretation of the relative odds of presence of a CNS disorder, comparing
people who have used the weight loss drug to those who have not. People who have used the weight loss drug
have odds of CNS that are almost three times as large as those for people who have not used the drug.

(e) Fisher’s exact test is better than the chi-square test. The independence assumption is met, but the

expected cell count corresponding the presence of a CNS disorder and the use of the drug is 5.68, so not all

the expected cell counts are less than 10.

8.45 (a) The p-value is 0.92; there is insufficient evidence to reject the null hypothesis of no association.

These data are plausible with the null hypothesis that green tea consumption is independent of esophageal

carcinoma. (b) Since the study uses outcome-dependent sampling, the odds ratio should be used as a measure

of association rather than relative risk. The odds ratio of esophageal carcinoma, comparing green tea drinkers

to non-drinkers, is 1.08; the odds of carcinoma for those who regularly drink green tea are 8% larger than the

odds for those who never drink green tea.

8.47 (a) The prevalence difference is 0.15− 0.10 = 0.05 and the prevalence ratio is 0.15/0.10 = 1.50. The ab-

solute prevalence of disease in one group is 0.05 higher than in the other group. For instance, in a population



548 APPENDIX A. END OF CHAPTER EXERCISE SOLUTIONS

of 100,000 one would expect 10,000 cases in the first group 15,000 in the second group, and increase of 5,000

cases. If the prevalence is 1.50 times as large as that in the other group, the difference of 10,000 vs 15,000 cases

in the hypothetical example represents 50% more cases. (b) The prevalence difference is 0.45 − 0.40 = 0.05

and the prevalence ratio is 0.45/0.40 = 1.125. In a population of 100,000, one would expect 40,000 cases in

the lower prevalence group and 45,000 cases in the higher prevalence group, a difference of 5,000 cases. The

difference of 5,000 cases is a 12.5% incease.

8.49 (a) The estimated odds that a male had a high salt diet are 7/53 = 0.132 and the estimated odds that a

male had a low salt diet are 53/7 = 7.58. (b) Among the men where the recorded death was due to CVD, the

odds of high salt diet are 5/30 = 0.167. The odds of low salt diet in the same group are 30/5 = 6. (c) The OR

for a CVD related death, comparing a high to a low salt diet are (5/2)/(30/23) = 1.92. (d) The OR for a non

CVD related death, comparing a high to a low salt diet are (2/5)/(23/30) = 0.522.

8.51 (a) Let p̂1 represent the observed proportion who experience the outcome of interest among those

assigned to placebo and p̂2 the observed proportion who experience the outcome of interest among those

assigned to tofacitinib; p̂1 = 42/145 = 0.290 and p̂2 = 26/144 = 0.181. The 95% CI is (−0.0527,−.2709). (b) Test

H0 : p1 = p2 against HA : p1 , p2. Let α = 0.05. With the z-test method, the z-statistic is 2.186. The two-sided

p-value is P |Z | ≥ 2.186 = 0.0289, which is smaller than 0.05. There is sufficient evidence to reject the null

hypothesis; the evidence suggests that tofacitinib is an effective treatment compared to placebo. (c) The 95%

CI for the risk ratio is (1.0422, 2.469). There is a larger risk of death or respiratory failure during the follow-up

period for individuals on the placebo group than for individuals on tofactinib that could be as high as over

twice the risk or as low as 1.04 times the risk.

8.53 (a) Given that the upper left cell has value 4 and that the margins are fixed, the other values in the
table (going clockwise) are 1, 5, and 1. (b) The relative risk for response, comparing treatment to control, is
(4/5)/(1/6) = 4.8. (c) There is only one table more extreme whose results favor treatment; the table in which
all 5 individuals in the treatment group show a response. (d) The one-sided p-value consists of the probability
of the observed table plus the probability of the table with a 5 in the upper left cell. Thus, the p-value is
(5

4)(6
1)

(11
5 )

+ (5
5)(6

0)
(11

5 )
= 0.067.
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9 Logistic Regression

9.1 (a) Odds of rolling a six are (1/6)/(5/6) = 1/5. (b) Odds of rolling an even number are (3/6)/(3/6) = 1.

(c) The probability of rolling an even number is 1/2; in a large number of rolls of the die an even number will

appear approximately 50% of the time. The odds of rolling an even number is the ratio of the number times

an even number appears to the number of times it does not. The odds are 1 because an even number shows

up as often as it does not.

9.3 (a) The estimated conditional log odds are exp[−6.054+(0.185)(25.93)] = 0.285. The estimated probabil-

ity is 0.221. (b) Both the odds and the probability calculated from the model lie above the tabulated values in

Figure 9.2.

9.5 (a) The odds ratio can be calculated directly and is exp[−(0.6)(6 − 4)] = exp[−(.6)(2)] = 0.301. (b) Rela-

tive risk is the ratio of the two probabilities, which depend on individual odds. The two odds are exp[3.0 −
(0.6)(6)] = 0.549 and exp[3.0 − (0.6)(4)] = 1.822; the two probabilities are 0.549/(1.0 + 0.549) = 0.354 and

1.822/(1 + 1.822) = 0.646. The relative risk is 0.254/0.646 = 0.393. (c) The odds ratio does not depend on the

intercept, but the probabilities and hence the relative risk does.

9.7 (a) The odds of survival are exp[1.44− (0.065)(10)] = 2.203. (b) The odds of survival for someone requir-

ing 20 minutes of CPR are exp[1.44− (0.065)(20)] = 1.15. The OR is 2.203/1.15 = 1.916. (c) The two estimated

probabilities for survival to discharge are 2.203/(1+2.203) = 0.688 and 1.15/(1+1.15) = 0.535. (d) The relative

risk is given by RR = 0.688/0.535 = 1.286. (e) A relative risk of 1.286 means that patients requiring 10 minutes

of CPR have a chance of surviving to discharge that is approximately 1.3 times that of patients requiring 20

minutes, or approximately 30% larger.

9.9 (a) The algebraic form of the model is

log(�oddsE(Mg)) = −1.089− 0.007(age),

where E is the event of being hyperuricemic. (b) Because the coefficient of age is negative, increasing age is

associated with an decrease in the odds of hyperuricemia. (c) The predicted odds are exp[−1.089−0.007(50)] =

0.237. (d) The OR comparing a 50 to a 30 year old is exp[−0.007(50−30)] = 0.869. The odds of hyperuricemia

in a 50 year old is 0.869 times that of a 30 year old; odds are decreased by 13%. (e) The predicted probability

of hyperuricemia for a 50 year old is 0.237/(1 + 0.237) = 0.192. (f) The odds of hyperuricemia for 30 year old

are exp[−1.089− 0.007(30)] = 0.273, so the estimated probability is 0.273/(1 + 0.273) = 0.215. The risk ratio is

0.192/0.215 = 0.893. The probability will be decreased by approximately 11%.

9.11 (a) False. Logistic regression models should be fit only when there are at least 10 cases with the less

frequent yes/no outcome. (b) Increased risk. Since the log(odds) is positive, increasing values of the predictor

will be associated with increases in log(odds) and odds. Probabilities increase whenever odds do. (c) No.

Estimated probabilities also depend on the intercept in a logistic regression. (d) No. The z-score for the

estimate is 0.750/0.650 = 1.154, smaller than 1.96 for a traditional 0.05 level test.

9.13 (a) The z statistic is the estimate divided by its standard error, 0.033/0.526 = 0.063. (b) No, the data

do not show a statistically significant association, since p = 2P (Z > 0.063) = 0.950. (c) A 95% confidence

interval for the estimate is 0.033 ± (1.96)(0.526) = (−0.998,1.064). With 95% confidence, a 1gm change in

magnesium is associated with a change in log odds from −0.998 to 1.064. (d) First construct the confidence

interval on the log odds scale. The estimated model coefficient b1 is the change in log odds corresponding

to a one unit change in magnesium. When magnesium increases from 0.25gm to 0.75gm, the change in log

odds will be (0.75 − 0.25)b1 = (0.50)(0.033) = 0.017. On the log odds scale, the 95% interval for the change

will be the confidence interval for 0.50b1. Since the standard error of 0.50b1 = (0.50)(0.526) = 0.263, the 95%

interval for the change in log odds is 0.017±1.96(0.263) = (−0.499,0.532). The 95% interval for the odds ratio

is exp(−0.499),exp(0.532) = 0.607,1.702. The confidence interval on the log odds scale could also have been

calculated by multiplying the upper and lower bounds for the confidence interval for b1 by 0.50.

9.15 (a) No. The number of recorded leukemia cases will be (1500)(0.0025) = 3.75, much less than the min-

imum of 10 events in the lower prevalence outcome. (b) Since 10/3.75 = 2.67, the number of surveyed homes
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should be larger by at least a factor of 2.67, or (10,000)(2.67) = 27,600 homes. (c) It might be reasonable to use

a 95% lower confidence bound for the proportion of observed leukemia cases, using the observed proportion

3.75/10,000 = 0.000375. Rounding 3.75 to 4, the 95% confidence interval for a binomial proportion with

4 events in 10,000 observations is (0.000128,0.001010). Using 0.000128, 10 events would be expected in a

sample size of 10/0.000128 = 78,125 homes.

9.17 (a) The two individuals differ by 4 units of BMI, so find the 95% interval for 4β1. The estimate 4b1 =
4(0.185) = 0.740, with standard error 4(0.037) = 0.148. The confidence interval is given by

0.740± (1.96)(0.148) −→ (0.450,1.03).

(b) No, the 95% confidence interval includes 1.

9.19 (a) The OR does not depend on the age the participant. From the data in the Figure 9.47, the log odds

ratio comparing women with and without a prior fracture is 0.839, so the estimated OR = exp(0.839) = 2.314.

A woman with a prior fracture has more than double the odds of experiencing a fracture during the study than

one without a prior fracture. (b) The OR does not depend on whether or not the woman has experienced a

prior fracture. There is a 10 year difference in the ages of the two women, so log(OR) = 10(0.041) = 0.140. The

OR = exp(0.140) = 0.15. The older women has an estimated OR that is 15% larger than the younger woman.

(c) The design of the study was exposure based, so in the full data of approximately 60,000 women both odds

and prevalence ratios could have been estimated. Since the sample of 500 was outcome based, it still allows

estimates of ORs. (d) Because the sample of 500 was outcome based, prevalence ratios cannot be estimated

from the data.

9.21 The conditions for the χ2 test are discussed in Section 8.3.2. The formulas for expected cell counts

under the assumption of independence are given in Section 8.3.1. All of the cases in the dataset contribute

independent data. In a two-way table with more than 4 cells, no more than 1/5 of the expected cell counts

should be less than 5 and all expected cell counts should be greater than 1. Since there are 8 cells in the

table the two lowest expected cell counts should be at least 5. There are no cell counts less than 1. Only one

expected cell count is less than 5 (calculations not shown). The expected cell count for the number crabs with

a light colored carapace and no satellites is 4.30. The conditions are satisfied.

9.23 (a) The estimate of the intercept is log(7/33) = −1.551. (b) The estimate for the triage category "green" is

the log of the estimated OR comparing "green" to "red", log((11/253)/(7/33)) = −1.585. (c) Yes. Each of the log

odds ratios comparing a category with "red" can be thought of as coming from a 2×2 table with the two rows

consisting of counts from "red" and the category of interest. In those tables, the standard errors of the log(OR)

can be calculated using the formulas in Section 8.6.4. For instance for the category "green" the standard error

of the log(OR), the standard error is given by
√

(1/253 + 1/11 + 1/33 + 1/7) = 0.518. Because the calculations of

standard errors in logistic regression and 2-way tables are different the standard errors from the two methods

may differ slightly.

9.25 (a) For males, Equation 9.30 reduces to

log(oddsE ) = −5.006 + (0.152)bmi,

since sex has the reference value "male". The difference between the two values of BMI is 33.2 − 30.0 = 3.2
so the difference between the log(odds) is (0.152)(3.2) = 0.486. The estimated OR = e0.486 = 1.626. (b) For
females, Equation 9.30 becomes

log(oddsE) = −5.006 + (0.152)bmi− 1.652 + (0.046)bmi

= −(5.006 + 1.652) + (0.152 + 0.046)bmi

= −6.658 + (0.198)bmi.

The difference in estimated log odds is (0.198)(3.2) = 0.634, and the estimated OR is e0.634 = 1.885. Females

with a BMI = 33.2 have an estimated odds of hyperuricemia that is approximately 1.88 times higher (88%

higher) than females with BMI = 30, while for males the OR is 1.63 times higher (63% higher). (c) Using the

model in Figure 9.12, the estimated OR for hyperuricemia for BMI = 33.2 versus 30 kg/m2 is exp[(3.2)(0.171)] =
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1.728, a value that is different from the two ORs calculated above.


