| CONF | FIDENCE INTERVALS | HYPOTHESIS TESTS | | | | |--|--|---|--|-----------------------------|--| | | and
 | IDENTIFY: Identify the _ | | | | | | name the appropriate interval.
ditions for the procedure are met. | CHOOSE: Choose and name the appropriate test. CHECK: Check that conditions for the procedure are met. CALCULATE: standardized test statistic = | | | | | <pre>df = (if applicable) (,)</pre> | | df = (if applicable)
p-value = | | | | | CONCLUDE:
We are C% | | CONCLUDE:
p-value < α, | | | | | We have evidence that
We do not have eviden | [], because []. OR ce that [], because []. | OR p-value > α , | | | | | When the parameter i | s: a single proportion p | When the parameter is: a single mean μ | | | | | CHOOSE: | to estimate p , or to test H_0 : | CHOOSE: | to est
to tes | imate μ , or it H_0 : | | | CHECK: | | CHECK: | | | | | CALCULATE: (point estimate: | or) | CALCULATE: (point estimate: | or |) | | | SE of estimate: for CI, use | ; for Test, use | SE of estimate: $df =$ | | | | | When the parameter i | s: a difference of proportions p_1 - p_2 | When the parameter is | When the parameter is: a difference of means μ_1 - μ_2 | | | | CHOOSE: | to estimate $p_1 - p_2$, or to test H_0 : | CHOOSE: | to estimat to test H_0 | te $\mu_1-\mu_2$, or: | | | CHECK: | | CHECK: | | | | | CALCULATE: (| or) | CALCULATE: (| or |) | | | point estimate: | | point estimate: | | | | | SE of estimate: | | SE of estimate: | | | | df = ; for Test, use for CI, use | When the parameter is: a mean of differences μ_{diff} | | When the parameter is: the slope of a regression line β_1 | | | |--|--|---|--|--| | CHOOSE: | to estimate μ_{diff} , or to test H_0 : | CHOOSE: | to estimate β_1 , or to test H_0 : | | | CHECK: | | CHECK: | | | | | | | | | | | | | | | | CALCULATE: (or | 1 | CALCULATE: (| or | | | | , | | or | | | point estimate: | | point estimate: | | | | SE of estimate:
df = | | SE of estimate: df = | | | | The χ2 tests for categorical variables | s. chi-square statistic — | | | | | When comparing the distribution of | <u> </u> | | listribution | | | CHOOSE: | one categorical variable | to a fixed/specified population of | iistribution) | | | CHECK: | | | | | | | | | | | | To calculate expected count | ts for each category | | | | | CALCULATE: (|) | | | | | $\chi^2 =$ | | | | | | df = | | | | | | When comparing the distribution of | a categorical variable acr | oss 2 or more populations/treat | ments | | | CHOOSE: | | | | | | CHECK: | | | | | | | | | | | | CALCULATE: (then | | to find expec | ted counts) | | | $\chi^2 =$ | | to iniu expec | teu counts) | | | df = | | | | | | When looking for association or dep | endence between two ca | ategorical variables | | | | CHOOSE: | | | | | | CHECK: | | | | | | | | | | | | CALCULATE: (then | | to find expect | ted counts) | | | $ \chi^2 = \\ df = $ | | · | | |